Control Law and Pseudo Neural Networks Synthesized by Evolutionary Symbolic Regression Technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F16%3A43875601" target="_blank" >RIV/70883521:28140/16:43875601 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-33786-9_9" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-33786-9_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-33786-9_9" target="_blank" >10.1007/978-3-319-33786-9_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Control Law and Pseudo Neural Networks Synthesized by Evolutionary Symbolic Regression Technique
Popis výsledku v původním jazyce
This research deals with synthesis of final complex expressions by means of an evolutionary symbolic regression technique-analytic programming (AP)-for novel approach to classification and system control. In the first case, classification technique-pseudo neural network is synthesized, i.e. relation between inputs and outputs created. The inspiration came from classical artificial neural networks where such a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights. AP will synthesize a whole expression at once. The latter case, the AP will create chaotic controller that secures the stabilization of stable state and high periodic orbit-oscillations between several values of discrete chaotic system. Both cases will produce a mathematical relation with several inputs, the latter case uses several historical values from the time series. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used.
Název v anglickém jazyce
Control Law and Pseudo Neural Networks Synthesized by Evolutionary Symbolic Regression Technique
Popis výsledku anglicky
This research deals with synthesis of final complex expressions by means of an evolutionary symbolic regression technique-analytic programming (AP)-for novel approach to classification and system control. In the first case, classification technique-pseudo neural network is synthesized, i.e. relation between inputs and outputs created. The inspiration came from classical artificial neural networks where such a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights. AP will synthesize a whole expression at once. The latter case, the AP will create chaotic controller that secures the stabilization of stable state and high periodic orbit-oscillations between several values of discrete chaotic system. Both cases will produce a mathematical relation with several inputs, the latter case uses several historical values from the time series. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Seminal Contributions to Modelling and Simulation: 30 Years of the European Council of Modelling and Simulation
ISBN
978-3-319-33785-2
Počet stran výsledku
23
Strana od-do
91-113
Počet stran knihy
292
Název nakladatele
Springer International Publishing AG
Místo vydání
Basel
Kód UT WoS kapitoly
—