Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pseudo Neural Networks Synthesized via Evolutionary Symbolic Regression for Pima Diabetes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F16%3A43875607" target="_blank" >RIV/70883521:28140/16:43875607 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pseudo Neural Networks Synthesized via Evolutionary Symbolic Regression for Pima Diabetes

  • Popis výsledku v původním jazyce

    This research deals with pseudo neural networks which were applied for solving Pima diabetes set. Pseudo neural networks are complex expressions synthesized by means of an evolutionary symbolic regression technique - analytic programming (AP). It represents a novel approach to classification when a relation between inputs and outputs is created. The inspiration came from classical artificial neural networks where such a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights. AP will synthesize a whole expression at once. There is also an advantage of suitable feature set selection during the same step of pseudo neural net synthesis. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used.

  • Název v anglickém jazyce

    Pseudo Neural Networks Synthesized via Evolutionary Symbolic Regression for Pima Diabetes

  • Popis výsledku anglicky

    This research deals with pseudo neural networks which were applied for solving Pima diabetes set. Pseudo neural networks are complex expressions synthesized by means of an evolutionary symbolic regression technique - analytic programming (AP). It represents a novel approach to classification when a relation between inputs and outputs is created. The inspiration came from classical artificial neural networks where such a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights. AP will synthesize a whole expression at once. There is also an advantage of suitable feature set selection during the same step of pseudo neural net synthesis. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mendel

  • ISBN

  • ISSN

    1803-3814

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    153-158

  • Název nakladatele

    Brno University of Technology

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    8. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku