Cycling Segments Multimodal Analysis and Classification Using Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63516820" target="_blank" >RIV/70883521:28140/17:63516820 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/17:00318548 RIV/00216208:11150/17:10367933 RIV/60461373:22340/17:43903861
Výsledek na webu
<a href="http://www.mdpi.com/2076-3417/7/6/581/xml" target="_blank" >http://www.mdpi.com/2076-3417/7/6/581/xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app7060581" target="_blank" >10.3390/app7060581</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cycling Segments Multimodal Analysis and Classification Using Neural Networks
Popis výsledku v původním jazyce
This paper presents methodology for the processing of GPS and heart rate signals acquired during long-term physical activities. The data analysed include geo-positioning and heart rate multichannel signals recorded for 272.2 h of cycling across the Andes mountains over a 5694-km long expedition. The proposed computational methods include multimodal data de-noising, visualization, and analysis in order to determine specific biomedical features. The results include the correspondence between the heart rate and slope for downhill and uphill cycling and the mean heart rate evolution on flat segments: a regression coefficient of -0.014 bpm/km related to altitude. The classification accuracy of selected cycling features by neural networks, support vector machine, and k-nearest neighbours methods is between 91.3% and 98.6%. The proposed methods allow the analysis of data during physical activities, enabling an efficient human-machine interaction.
Název v anglickém jazyce
Cycling Segments Multimodal Analysis and Classification Using Neural Networks
Popis výsledku anglicky
This paper presents methodology for the processing of GPS and heart rate signals acquired during long-term physical activities. The data analysed include geo-positioning and heart rate multichannel signals recorded for 272.2 h of cycling across the Andes mountains over a 5694-km long expedition. The proposed computational methods include multimodal data de-noising, visualization, and analysis in order to determine specific biomedical features. The results include the correspondence between the heart rate and slope for downhill and uphill cycling and the mean heart rate evolution on flat segments: a regression coefficient of -0.014 bpm/km related to altitude. The classification accuracy of selected cycling features by neural networks, support vector machine, and k-nearest neighbours methods is between 91.3% and 98.6%. The proposed methods allow the analysis of data during physical activities, enabling an efficient human-machine interaction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences-Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000404449800057
EID výsledku v databázi Scopus
2-s2.0-85020253439