Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of Accelerometric and Cycling Cadence Data for Motion Monitoring

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F21%3A10437147" target="_blank" >RIV/00216208:11150/21:10437147 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22340/21:43922536 RIV/00179906:_____/21:10437147 RIV/70883521:28140/21:63537958 RIV/68407700:21730/21:00353765

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5teJJcgI3l" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5teJJcgI3l</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3111323" target="_blank" >10.1109/ACCESS.2021.3111323</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of Accelerometric and Cycling Cadence Data for Motion Monitoring

  • Popis výsledku v původním jazyce

    Motion pattern analysis uses a variety of methods to recognise physical activities recorded by wearable sensors, video-cameras, and global navigation satellite systems. This paper presents motion analysis during cycling, using data from a heart rate monitor, accelerometric signals recorded by a navigation system, and the sensors of a mobile phone. Real cycling experiments were recorded in a hilly area with routes of about 12 km long. Signals were analyzed with appropriate computational tools to find the relationships between geographical and physiological data, including the detection of heart rate recovery delay as an indicator of physical and nervous condition. The proposed algorithms utilized methods of signal analysis and extraction of body motion features, which were used to study the correspondence of heart rate, route profile, cycling speed, and cycling cadence, both in the time and frequency domains. Data processing included the use of Kohonen networks and supervised two-layer softmax computational models for the classification of motion patterns. The results obtained point to a mean time of 22.7 s for a 50 % decrease of the heart rate after a heavy load detected by a cadence sensor. Further results point to a close correspondence between the signals recorded by the body worn accelerometers and the speed evaluated from the GNSSs data. The classification of downhill and uphill cycling based upon accelerometric data achieved an accuracy of 93.9 % and 95.0 % for the training and testing data sets, respectively. The proposed methodology suggests that wearable sensors and artificial intelligence methods form efficient tools for motion monitoring in the assessment of the physiological condition during different sports activities including cycling, running, or skiing. These techniques may also be applied to wide ranging applications in rehabilitation and in the diagnostics of neurological disorders.

  • Název v anglickém jazyce

    Evaluation of Accelerometric and Cycling Cadence Data for Motion Monitoring

  • Popis výsledku anglicky

    Motion pattern analysis uses a variety of methods to recognise physical activities recorded by wearable sensors, video-cameras, and global navigation satellite systems. This paper presents motion analysis during cycling, using data from a heart rate monitor, accelerometric signals recorded by a navigation system, and the sensors of a mobile phone. Real cycling experiments were recorded in a hilly area with routes of about 12 km long. Signals were analyzed with appropriate computational tools to find the relationships between geographical and physiological data, including the detection of heart rate recovery delay as an indicator of physical and nervous condition. The proposed algorithms utilized methods of signal analysis and extraction of body motion features, which were used to study the correspondence of heart rate, route profile, cycling speed, and cycling cadence, both in the time and frequency domains. Data processing included the use of Kohonen networks and supervised two-layer softmax computational models for the classification of motion patterns. The results obtained point to a mean time of 22.7 s for a 50 % decrease of the heart rate after a heavy load detected by a cadence sensor. Further results point to a close correspondence between the signals recorded by the body worn accelerometers and the speed evaluated from the GNSSs data. The classification of downhill and uphill cycling based upon accelerometric data achieved an accuracy of 93.9 % and 95.0 % for the training and testing data sets, respectively. The proposed methodology suggests that wearable sensors and artificial intelligence methods form efficient tools for motion monitoring in the assessment of the physiological condition during different sports activities including cycling, running, or skiing. These techniques may also be applied to wide ranging applications in rehabilitation and in the diagnostics of neurological disorders.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access [online]

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    2021

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    129256-129263

  • Kód UT WoS článku

    000698841800001

  • EID výsledku v databázi Scopus

    2-s2.0-85114716395