Motion analysis using global navigation satellite system and physiological data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63569198" target="_blank" >RIV/70883521:28140/23:63569198 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00371375 RIV/00216208:11150/23:10473754 RIV/60461373:22340/23:43927699
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10107613" target="_blank" >https://ieeexplore.ieee.org/document/10107613</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3270102" target="_blank" >10.1109/ACCESS.2023.3270102</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Motion analysis using global navigation satellite system and physiological data
Popis výsledku v původním jazyce
Motion analysis using wearable sensors is an essential research topic with broad mathematical foundations and applications in various areas, including engineering, robotics, and neurology. This paper presents the use of the global navigation satellite system (GNSS) for detecting and recording the position of a moving body, along with signals from additional sensors, for monitoring of physical activity and analyzing heart rate dynamics during running on route segments of different slopes and speeds. This method provides an alternative to the heart monitoring on the treadmill ergometer in the cardiology laboratory. The proposed computational methodology involves digital data preprocessing, time synchronization, and data resampling to enable their correlation, feature extraction both in time and frequency domains, and classification. The datasets include signals acquired during ten experimental runs in the selected area. The motion patterns detection involves segmenting the signals by analysing the GNSS data, evaluating the patterns, and classifying the motion signals under different terrain conditions. This classification method compares neural networks, support vector machine, Bayesian, and k-nearest neighbour methods. The highest accuracy of 93.3 % was achieved by using combined features and a two-layer neural network for classification into three classes with different slopes. The proposed method and graphical user interface demonstrate the efficiency of multi-channel and multi-dimensional signal processing with applications in rehabilitation, fitness movement monitoring, neurology, cardiology, engineering, and robotic systems.
Název v anglickém jazyce
Motion analysis using global navigation satellite system and physiological data
Popis výsledku anglicky
Motion analysis using wearable sensors is an essential research topic with broad mathematical foundations and applications in various areas, including engineering, robotics, and neurology. This paper presents the use of the global navigation satellite system (GNSS) for detecting and recording the position of a moving body, along with signals from additional sensors, for monitoring of physical activity and analyzing heart rate dynamics during running on route segments of different slopes and speeds. This method provides an alternative to the heart monitoring on the treadmill ergometer in the cardiology laboratory. The proposed computational methodology involves digital data preprocessing, time synchronization, and data resampling to enable their correlation, feature extraction both in time and frequency domains, and classification. The datasets include signals acquired during ten experimental runs in the selected area. The motion patterns detection involves segmenting the signals by analysing the GNSS data, evaluating the patterns, and classifying the motion signals under different terrain conditions. This classification method compares neural networks, support vector machine, Bayesian, and k-nearest neighbour methods. The highest accuracy of 93.3 % was achieved by using combined features and a two-layer neural network for classification into three classes with different slopes. The proposed method and graphical user interface demonstrate the efficiency of multi-channel and multi-dimensional signal processing with applications in rehabilitation, fitness movement monitoring, neurology, cardiology, engineering, and robotic systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
42096-42103
Kód UT WoS článku
000981907000001
EID výsledku v databázi Scopus
2-s2.0-85159687720