Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recognition of motion patterns using accelerometers for ataxic gait assessment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F21%3A10422642" target="_blank" >RIV/00216208:11150/21:10422642 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22340/20:43921136 RIV/68407700:21730/21:00347475 RIV/00179906:_____/21:10422642

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qHmpns7HMq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qHmpns7HMq</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-020-05103-2" target="_blank" >10.1007/s00521-020-05103-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recognition of motion patterns using accelerometers for ataxic gait assessment

  • Popis výsledku v původním jazyce

    The recognition of motion patterns belongs to very important research areas related to neurology, rehabilitation, and robotics. It is based on modern sensor technologies and general mathematical methods, multidimensional signal processing, and machine learning. The present paper is devoted to the detection of features associated with accelerometric data acquired by 31 time-synchronized sensors located at different parts of the body. Experimental data sets were acquired from 25 individuals diagnosed as healthy controls and ataxic patients. The proposed method includes the application of the discrete Fourier transform for the estimation of the mean power in selected frequency bands and the use of these features for data segments classification. The study includes a comparison of results obtained from signals recorded at different positions. Evaluations are based on classification accuracy and cross-validation errors estimated by support vector machine, Bayesian, nearest neighbours (k-NN], and neural network (NN) methods. Results show that highest accuracies of 77.1%, 78.9%, 89.9%, 98.0%, and 98.5% were achieved by NN method for signals acquired from the sensors on the feet, legs, uplegs, shoulders, and head/spine, respectively, recorded in 201 signal segments. The entire study is based on observations in the clinical environment and suggests the importance of augmented reality to decisions and diagnosis in neurology.

  • Název v anglickém jazyce

    Recognition of motion patterns using accelerometers for ataxic gait assessment

  • Popis výsledku anglicky

    The recognition of motion patterns belongs to very important research areas related to neurology, rehabilitation, and robotics. It is based on modern sensor technologies and general mathematical methods, multidimensional signal processing, and machine learning. The present paper is devoted to the detection of features associated with accelerometric data acquired by 31 time-synchronized sensors located at different parts of the body. Experimental data sets were acquired from 25 individuals diagnosed as healthy controls and ataxic patients. The proposed method includes the application of the discrete Fourier transform for the estimation of the mean power in selected frequency bands and the use of these features for data segments classification. The study includes a comparison of results obtained from signals recorded at different positions. Evaluations are based on classification accuracy and cross-validation errors estimated by support vector machine, Bayesian, nearest neighbours (k-NN], and neural network (NN) methods. Results show that highest accuracies of 77.1%, 78.9%, 89.9%, 98.0%, and 98.5% were achieved by NN method for signals acquired from the sensors on the feet, legs, uplegs, shoulders, and head/spine, respectively, recorded in 201 signal segments. The entire study is based on observations in the clinical environment and suggests the importance of augmented reality to decisions and diagnosis in neurology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007441" target="_blank" >EF17_048/0007441: PERSONMED - Centrum rozvoje personalizované medicíny u věkem podmíněných onemocnění</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    2207-2215

  • Kód UT WoS článku

    000543276900001

  • EID výsledku v databázi Scopus

    2-s2.0-85087045961