Recognition of motion patterns using accelerometers for ataxic gait assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43921136" target="_blank" >RIV/60461373:22340/20:43921136 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11150/21:10422642 RIV/00179906:_____/21:10422642 RIV/68407700:21730/21:00347475
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00521-020-05103-2" target="_blank" >https://link.springer.com/article/10.1007/s00521-020-05103-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-020-05103-2" target="_blank" >10.1007/s00521-020-05103-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of motion patterns using accelerometers for ataxic gait assessment
Popis výsledku v původním jazyce
The recognition of motion patterns belongs to very important research areas related to neurology, rehabilitation, and robotics. It is based on modern sensor technologies and general mathematical methods, multidimensional signal processing, and machine learning. The present paper is devoted to the detection of features associated with accelerometric data acquired by 31 time-synchronized sensors located at different parts of the body. Experimental data sets were acquired from 25 individuals diagnosed as healthy controls and ataxic patients. The proposed method includes the application of the discrete Fourier transform for the estimation of the mean power in selected frequency bands and the use of these features for data segments classification. The study includes a comparison of results obtained from signals recorded at different positions. Evaluations are based on classification accuracy and cross-validation errors estimated by support vector machine, Bayesian, nearest neighbours (k-NN], and neural network (NN) methods. Results show that highest accuracies of 77.1%, 78.9%, 89.9%, 98.0%, and 98.5% were achieved by NN method for signals acquired from the sensors on the feet, legs, uplegs, shoulders, and head/spine, respectively, recorded in 201 signal segments. The entire study is based on observations in the clinical environment and suggests the importance of augmented reality to decisions and diagnosis in neurology. © 2020, Springer-Verlag London Ltd., part of Springer Nature.
Název v anglickém jazyce
Recognition of motion patterns using accelerometers for ataxic gait assessment
Popis výsledku anglicky
The recognition of motion patterns belongs to very important research areas related to neurology, rehabilitation, and robotics. It is based on modern sensor technologies and general mathematical methods, multidimensional signal processing, and machine learning. The present paper is devoted to the detection of features associated with accelerometric data acquired by 31 time-synchronized sensors located at different parts of the body. Experimental data sets were acquired from 25 individuals diagnosed as healthy controls and ataxic patients. The proposed method includes the application of the discrete Fourier transform for the estimation of the mean power in selected frequency bands and the use of these features for data segments classification. The study includes a comparison of results obtained from signals recorded at different positions. Evaluations are based on classification accuracy and cross-validation errors estimated by support vector machine, Bayesian, nearest neighbours (k-NN], and neural network (NN) methods. Results show that highest accuracies of 77.1%, 78.9%, 89.9%, 98.0%, and 98.5% were achieved by NN method for signals acquired from the sensors on the feet, legs, uplegs, shoulders, and head/spine, respectively, recorded in 201 signal segments. The entire study is based on observations in the clinical environment and suggests the importance of augmented reality to decisions and diagnosis in neurology. © 2020, Springer-Verlag London Ltd., part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
25 June 2020
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000543276900001
EID výsledku v databázi Scopus
2-s2.0-85087045961