Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Blood Oxygen Concentration and Physiological Data Changes During Motion While Wearing Face Masks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924520" target="_blank" >RIV/60461373:22340/22:43924520 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/70883521:28140/22:63556098 RIV/00216208:11150/22:10453349 RIV/68407700:21730/22:00364359

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9869822" target="_blank" >https://ieeexplore.ieee.org/document/9869822</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2022.3202931" target="_blank" >10.1109/ACCESS.2022.3202931</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Blood Oxygen Concentration and Physiological Data Changes During Motion While Wearing Face Masks

  • Popis výsledku v původním jazyce

    The study of physiological changes recorded by wearable devices during physical exercises belongs to very important research topics in neurology for the detection of motion disorders or monitoring of the fitness level during sports activities. This paper contributes to this area with studies of the effect of face masks and respirators on blood oxygen concentration, breathing frequency, and the heart rate changes. Experimental data sets include 296 segments of their total length of 60 hours, recorded on a home exercise bike under different motion conditions. Wearable instruments with oximetric, heart rate, accelerometric, and thermal camera sensors were used to fill the own database of signals recorded with selected sampling frequencies. The proposed methodology includes fundamental signal and image processing methods for signal analysis and machine learning tools for labeling image components and detecting facial temperature changes. Results show the minimal effect of mask wearing on blood oxygen concentration but its substantial influence on the breathing frequency and the heart rate. The use of a respirator substantially increased the respiratory rate for the given set of experiments under the load. This indicates how wearable sensors, computational intelligence, and machine learning can be used for motion monitoring and data analysis of signals recorded in different conditions. © 2013 IEEE.

  • Název v anglickém jazyce

    Blood Oxygen Concentration and Physiological Data Changes During Motion While Wearing Face Masks

  • Popis výsledku anglicky

    The study of physiological changes recorded by wearable devices during physical exercises belongs to very important research topics in neurology for the detection of motion disorders or monitoring of the fitness level during sports activities. This paper contributes to this area with studies of the effect of face masks and respirators on blood oxygen concentration, breathing frequency, and the heart rate changes. Experimental data sets include 296 segments of their total length of 60 hours, recorded on a home exercise bike under different motion conditions. Wearable instruments with oximetric, heart rate, accelerometric, and thermal camera sensors were used to fill the own database of signals recorded with selected sampling frequencies. The proposed methodology includes fundamental signal and image processing methods for signal analysis and machine learning tools for labeling image components and detecting facial temperature changes. Results show the minimal effect of mask wearing on blood oxygen concentration but its substantial influence on the breathing frequency and the heart rate. The use of a respirator substantially increased the respiratory rate for the given set of experiments under the load. This indicates how wearable sensors, computational intelligence, and machine learning can be used for motion monitoring and data analysis of signals recorded in different conditions. © 2013 IEEE.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19007" target="_blank" >LTAIN19007: Vývoj pokročilých výpočetních algoritmů pro objektivní posouzení pooperační rehabilitace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    91763-91770

  • Kód UT WoS článku

    000852480700001

  • EID výsledku v databázi Scopus

    2-s2.0-85137583288