The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924513" target="_blank" >RIV/60461373:22340/22:43924513 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28140/22:63556079 RIV/00216208:11150/22:10453351 RIV/68407700:21730/22:00364356
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9866077" target="_blank" >https://ieeexplore.ieee.org/document/9866077</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNSRE.2022.3201487" target="_blank" >10.1109/TNSRE.2022.3201487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking
Popis výsledku v původním jazyce
Gait analysis and the assessment of rehabilitation exercises are important processes that occur during fitness level monitoring and the treatment of neurological disorders. This paper presents the possibility of using oximetric, heart rate (HR), accelerometric, and global navigation satellite systems (GNSSs) to analyse signals recorded during uphill and downhill walking without and with a face mask to find its influence on physiological functions during selected walking patterns. The experimental dataset includes 86 signal segments acquired under different conditions. The proposed methodology is based on signal analysis in both the time and frequency domains. The results indicate that face mask use has a minimal effect on blood oxygen concentration and heart rate, with the average mean changes of these parameters being less than 2%. The support vector machine, a Bayesian method, the k-nearest neighbour method, and a two-layer neural network showed very good separation abilities and successfully classified different walking patterns only in the case when the effect of face mask wearing was not included in the classification process. Our methodology suggests that artificial intelligence and machine learning tools are efficient methods for the assessment of motion patterns in different motion conditions and that face masks have a negligible effect for short-duration experiments. © 2001-2011 IEEE.
Název v anglickém jazyce
The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking
Popis výsledku anglicky
Gait analysis and the assessment of rehabilitation exercises are important processes that occur during fitness level monitoring and the treatment of neurological disorders. This paper presents the possibility of using oximetric, heart rate (HR), accelerometric, and global navigation satellite systems (GNSSs) to analyse signals recorded during uphill and downhill walking without and with a face mask to find its influence on physiological functions during selected walking patterns. The experimental dataset includes 86 signal segments acquired under different conditions. The proposed methodology is based on signal analysis in both the time and frequency domains. The results indicate that face mask use has a minimal effect on blood oxygen concentration and heart rate, with the average mean changes of these parameters being less than 2%. The support vector machine, a Bayesian method, the k-nearest neighbour method, and a two-layer neural network showed very good separation abilities and successfully classified different walking patterns only in the case when the effect of face mask wearing was not included in the classification process. Our methodology suggests that artificial intelligence and machine learning tools are efficient methods for the assessment of motion patterns in different motion conditions and that face masks have a negligible effect for short-duration experiments. © 2001-2011 IEEE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19007" target="_blank" >LTAIN19007: Vývoj pokročilých výpočetních algoritmů pro objektivní posouzení pooperační rehabilitace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE transactions on neural systems and rehabilitation engineering
ISSN
1534-4320
e-ISSN
1558-0210
Svazek periodika
30
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
2467-2473
Kód UT WoS článku
000849260100011
EID výsledku v databázi Scopus
2-s2.0-85137136123