Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924513" target="_blank" >RIV/60461373:22340/22:43924513 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/70883521:28140/22:63556079 RIV/00216208:11150/22:10453351 RIV/68407700:21730/22:00364356

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9866077" target="_blank" >https://ieeexplore.ieee.org/document/9866077</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TNSRE.2022.3201487" target="_blank" >10.1109/TNSRE.2022.3201487</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking

  • Popis výsledku v původním jazyce

    Gait analysis and the assessment of rehabilitation exercises are important processes that occur during fitness level monitoring and the treatment of neurological disorders. This paper presents the possibility of using oximetric, heart rate (HR), accelerometric, and global navigation satellite systems (GNSSs) to analyse signals recorded during uphill and downhill walking without and with a face mask to find its influence on physiological functions during selected walking patterns. The experimental dataset includes 86 signal segments acquired under different conditions. The proposed methodology is based on signal analysis in both the time and frequency domains. The results indicate that face mask use has a minimal effect on blood oxygen concentration and heart rate, with the average mean changes of these parameters being less than 2%. The support vector machine, a Bayesian method, the k-nearest neighbour method, and a two-layer neural network showed very good separation abilities and successfully classified different walking patterns only in the case when the effect of face mask wearing was not included in the classification process. Our methodology suggests that artificial intelligence and machine learning tools are efficient methods for the assessment of motion patterns in different motion conditions and that face masks have a negligible effect for short-duration experiments. © 2001-2011 IEEE.

  • Název v anglickém jazyce

    The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking

  • Popis výsledku anglicky

    Gait analysis and the assessment of rehabilitation exercises are important processes that occur during fitness level monitoring and the treatment of neurological disorders. This paper presents the possibility of using oximetric, heart rate (HR), accelerometric, and global navigation satellite systems (GNSSs) to analyse signals recorded during uphill and downhill walking without and with a face mask to find its influence on physiological functions during selected walking patterns. The experimental dataset includes 86 signal segments acquired under different conditions. The proposed methodology is based on signal analysis in both the time and frequency domains. The results indicate that face mask use has a minimal effect on blood oxygen concentration and heart rate, with the average mean changes of these parameters being less than 2%. The support vector machine, a Bayesian method, the k-nearest neighbour method, and a two-layer neural network showed very good separation abilities and successfully classified different walking patterns only in the case when the effect of face mask wearing was not included in the classification process. Our methodology suggests that artificial intelligence and machine learning tools are efficient methods for the assessment of motion patterns in different motion conditions and that face masks have a negligible effect for short-duration experiments. © 2001-2011 IEEE.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19007" target="_blank" >LTAIN19007: Vývoj pokročilých výpočetních algoritmů pro objektivní posouzení pooperační rehabilitace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE transactions on neural systems and rehabilitation engineering

  • ISSN

    1534-4320

  • e-ISSN

    1558-0210

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

    2467-2473

  • Kód UT WoS článku

    000849260100011

  • EID výsledku v databázi Scopus

    2-s2.0-85137136123