Machine Learning in Rehabilitation Assessment for Thermal and Heart Rate Data Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F18%3A63519836" target="_blank" >RIV/70883521:28140/18:63519836 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/18:00328956 RIV/00216208:11150/18:10381466 RIV/60461373:22340/18:43915773
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8352748/authors#authors" target="_blank" >https://ieeexplore.ieee.org/document/8352748/authors#authors</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNSRE.2018.2831444" target="_blank" >10.1109/TNSRE.2018.2831444</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning in Rehabilitation Assessment for Thermal and Heart Rate Data Processing
Popis výsledku v původním jazyce
Multimodal signal analysis based on sophisticated noninvasive sensors, efficient communication systems, and machine learning, have a rapidly increasing range of different applications. The present paper is devoted to pattern recognition and the analysis of physiological data acquired by heart rate and thermal camera sensors during rehabilitation. A total number of 56 experimental data sets, each 40 min long, of the heart rate and breathing temperature recorded on an exercise bike have been processed to determine the fitness level and possible medical disorders. The proposed general methodology combines machine learning methods for the detection of the changing temperature ranges of the thermal camera and adaptive image processing methods to evaluate the frequency of breathing. To determine the individual temperature values, a neural network model with the sigmoidal and the probabilistic transfer function in the first and the second layers are applied. Appropriate statistical methods are then used to find the correspondence between the exercise activity and selected physiological functions. The evaluated mean delay of 21 s of the heart rate drop related to the change of the activity level corresponds to results obtained in real cycling conditions. Further results include the average value of the change of the breathing temperature (167 s) and breathing frequency (49 s).
Název v anglickém jazyce
Machine Learning in Rehabilitation Assessment for Thermal and Heart Rate Data Processing
Popis výsledku anglicky
Multimodal signal analysis based on sophisticated noninvasive sensors, efficient communication systems, and machine learning, have a rapidly increasing range of different applications. The present paper is devoted to pattern recognition and the analysis of physiological data acquired by heart rate and thermal camera sensors during rehabilitation. A total number of 56 experimental data sets, each 40 min long, of the heart rate and breathing temperature recorded on an exercise bike have been processed to determine the fitness level and possible medical disorders. The proposed general methodology combines machine learning methods for the detection of the changing temperature ranges of the thermal camera and adaptive image processing methods to evaluate the frequency of breathing. To determine the individual temperature values, a neural network model with the sigmoidal and the probabilistic transfer function in the first and the second layers are applied. Appropriate statistical methods are then used to find the correspondence between the exercise activity and selected physiological functions. The evaluated mean delay of 21 s of the heart rate drop related to the change of the activity level corresponds to results obtained in real cycling conditions. Further results include the average value of the change of the breathing temperature (167 s) and breathing frequency (49 s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING
ISSN
1534-4320
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
1209-1214
Kód UT WoS článku
000438078700011
EID výsledku v databázi Scopus
2-s2.0-85046376219