Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517006" target="_blank" >RIV/70883521:28140/17:63517006 - isvavai.cz</a>
Výsledek na webu
<a href="http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178950" target="_blank" >http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178950</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0178950" target="_blank" >10.1371/journal.pone.0178950</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow
Popis výsledku v původním jazyce
Delay represents a significant phenomenon in the dynamics of many human-related systems - including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial - the roots of which decide about stability, is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system´s eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on - and verified by, a numerical bio-cybernetic example of the stabilization of a human-being´s movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays.
Název v anglickém jazyce
Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow
Popis výsledku anglicky
Delay represents a significant phenomenon in the dynamics of many human-related systems - including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial - the roots of which decide about stability, is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system´s eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on - and verified by, a numerical bio-cybernetic example of the stabilization of a human-being´s movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F19.0376" target="_blank" >ED2.1.00/19.0376: CEBIA - Tech Instrumentation</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE
ISSN
1932-6203
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
"nestrankovano"
Kód UT WoS článku
000402923200071
EID výsledku v databázi Scopus
2-s2.0-85020447208