A novel frequency-domain approach for the exact range of imaginary spectra and the stability analysis of LTI systems with two delays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63525250" target="_blank" >RIV/70883521:28140/20:63525250 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9000594" target="_blank" >https://ieeexplore.ieee.org/document/9000594</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.2973834" target="_blank" >10.1109/ACCESS.2020.2973834</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel frequency-domain approach for the exact range of imaginary spectra and the stability analysis of LTI systems with two delays
Popis výsledku v původním jazyce
This paper presents a novel frequency-domain approach to reveal the exact range of the imaginary spectra and the stability of linear time-invariant systems with two delays. First, an exact relation, i.e., the Rekasius substitution, is used to replace the exponential term caused by the delays in order to transform the transcendental characteristic equation to a quasi-polynomial. Second, this quasi-polynomial is uniquely tackled by our proposed Dixon resultant and discriminant theory, leading to the elimination of delay-related elements and the revelation of the exact range of the frequency spectra of the original system of interest. Then, by sweeping the frequency over this obtained range, the stability switching curves are declared exhaustively. Last, we deploy the cluster treatment of characteristic roots (CTCR) paradigm to reveal the exact and complete stability map. The proposed methodologies are tested and verified by a numerical method called Quasi-Polynomial mapping-based Root finder (QPmR) over an example case.
Název v anglickém jazyce
A novel frequency-domain approach for the exact range of imaginary spectra and the stability analysis of LTI systems with two delays
Popis výsledku anglicky
This paper presents a novel frequency-domain approach to reveal the exact range of the imaginary spectra and the stability of linear time-invariant systems with two delays. First, an exact relation, i.e., the Rekasius substitution, is used to replace the exponential term caused by the delays in order to transform the transcendental characteristic equation to a quasi-polynomial. Second, this quasi-polynomial is uniquely tackled by our proposed Dixon resultant and discriminant theory, leading to the elimination of delay-related elements and the revelation of the exact range of the frequency spectra of the original system of interest. Then, by sweeping the frequency over this obtained range, the stability switching curves are declared exhaustively. Last, we deploy the cluster treatment of characteristic roots (CTCR) paradigm to reveal the exact and complete stability map. The proposed methodologies are tested and verified by a numerical method called Quasi-Polynomial mapping-based Root finder (QPmR) over an example case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F19.0376" target="_blank" >ED2.1.00/19.0376: CEBIA - Tech Instrumentation</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
36595-36601
Kód UT WoS článku
000524616200004
EID výsledku v databázi Scopus
2-s2.0-85081136503