Emotion Recognition in video with Open CV and Cognitive Services API: A comparison.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517246" target="_blank" >RIV/70883521:28140/17:63517246 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2017/164.pdf" target="_blank" >http://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2017/164.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2507/28th.daaam.proceedings.164" target="_blank" >10.2507/28th.daaam.proceedings.164</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Emotion Recognition in video with Open CV and Cognitive Services API: A comparison.
Popis výsledku v původním jazyce
Emotions are people's reactions to certain stimuli. Most common way to detect an emotion is by facial expression analysis. Machine learning algorithms combined with other artificial intelligence techniques have been developed in order to identify expressions found in images and videos. Support Vector Machines, along with Haar Cascade classifiers can be used for efficient emotion recognition. OpenCV, an open-source library for machine learning, makes it possible to develop computer-vision applications. Cognitive Services is a free set of APIs which easily integrate artificial intelligence in applications. In this paper a comparison between two implementations of Emotion Recognition algorithms, namely SVM and Cognitive Services API, was carried out to compare their performance. For this research, 500 tests were performed per experiment. The SVM implementation in OpenCV obtained the best performance, with an 84% accuracy, which can be boosted by increasing the sample size per emotion.
Název v anglickém jazyce
Emotion Recognition in video with Open CV and Cognitive Services API: A comparison.
Popis výsledku anglicky
Emotions are people's reactions to certain stimuli. Most common way to detect an emotion is by facial expression analysis. Machine learning algorithms combined with other artificial intelligence techniques have been developed in order to identify expressions found in images and videos. Support Vector Machines, along with Haar Cascade classifiers can be used for efficient emotion recognition. OpenCV, an open-source library for machine learning, makes it possible to develop computer-vision applications. Cognitive Services is a free set of APIs which easily integrate artificial intelligence in applications. In this paper a comparison between two implementations of Emotion Recognition algorithms, namely SVM and Cognitive Services API, was carried out to compare their performance. For this research, 500 tests were performed per experiment. The SVM implementation in OpenCV obtained the best performance, with an 84% accuracy, which can be boosted by increasing the sample size per emotion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Annals of DAAAM International 2017, Volume 28
ISBN
978-3-902734-14-3
ISSN
2304-1382
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
1185-1190
Název nakladatele
DAAAM International Vienna
Místo vydání
Vienna
Místo konání akce
Zadar
Datum konání akce
8. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—