Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparing the Performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517247" target="_blank" >RIV/70883521:28140/17:63517247 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.wseas.org/multimedia/journals/information/2017/a405909-078.pdf" target="_blank" >http://www.wseas.org/multimedia/journals/information/2017/a405909-078.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparing the Performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs

  • Popis výsledku v původním jazyce

    Emotions represent feelings about people in several situations. Various machine learning algorithms have been developed for emotion detection in a multimedia element, such as an image or a video. These techniques can be measured by comparing their accuracy with a given dataset in order to determine which algorithm can be selected among others. This paper deals with the comparison of three implementations of emotion recognition in faces, each implemented with specific technology. OpenCV is an open-source library of functions and packages mostly used for computer-vision analysis and applications. Cognitive services, as well as Google Cloud AI, are sets of APIs which provide machine learning and artificial intelligence algorithms to develop smart applications capable of integrate computer-vision, speech, knowledge, and language processing features. Three Android mobile applications were developed in order to test the performance between an OpenCV algorithm for emotion recognition, an implementation of Emotion cognitive service, and a Google Cloud Vision deployment for emotion-detection in faces. For this research, one thousand tests were carried out per experiment. Our findings show that the OpenCV implementation got the best performance, which can be improved by increasing the sample size per emotion during the training step.

  • Název v anglickém jazyce

    Comparing the Performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs

  • Popis výsledku anglicky

    Emotions represent feelings about people in several situations. Various machine learning algorithms have been developed for emotion detection in a multimedia element, such as an image or a video. These techniques can be measured by comparing their accuracy with a given dataset in order to determine which algorithm can be selected among others. This paper deals with the comparison of three implementations of emotion recognition in faces, each implemented with specific technology. OpenCV is an open-source library of functions and packages mostly used for computer-vision analysis and applications. Cognitive services, as well as Google Cloud AI, are sets of APIs which provide machine learning and artificial intelligence algorithms to develop smart applications capable of integrate computer-vision, speech, knowledge, and language processing features. Three Android mobile applications were developed in order to test the performance between an OpenCV algorithm for emotion recognition, an implementation of Emotion cognitive service, and a Google Cloud Vision deployment for emotion-detection in faces. For this research, one thousand tests were carried out per experiment. Our findings show that the OpenCV implementation got the best performance, which can be improved by increasing the sample size per emotion during the training step.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    WSEAS Transactions on Information Science and Applications

  • ISSN

    1790-0832

  • e-ISSN

  • Svazek periodika

    2017

  • Číslo periodika v rámci svazku

    14

  • Stát vydavatele periodika

    GR - Řecká republika

  • Počet stran výsledku

    7

  • Strana od-do

    184-190

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus