Comparing the Performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517247" target="_blank" >RIV/70883521:28140/17:63517247 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.wseas.org/multimedia/journals/information/2017/a405909-078.pdf" target="_blank" >http://www.wseas.org/multimedia/journals/information/2017/a405909-078.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing the Performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs
Popis výsledku v původním jazyce
Emotions represent feelings about people in several situations. Various machine learning algorithms have been developed for emotion detection in a multimedia element, such as an image or a video. These techniques can be measured by comparing their accuracy with a given dataset in order to determine which algorithm can be selected among others. This paper deals with the comparison of three implementations of emotion recognition in faces, each implemented with specific technology. OpenCV is an open-source library of functions and packages mostly used for computer-vision analysis and applications. Cognitive services, as well as Google Cloud AI, are sets of APIs which provide machine learning and artificial intelligence algorithms to develop smart applications capable of integrate computer-vision, speech, knowledge, and language processing features. Three Android mobile applications were developed in order to test the performance between an OpenCV algorithm for emotion recognition, an implementation of Emotion cognitive service, and a Google Cloud Vision deployment for emotion-detection in faces. For this research, one thousand tests were carried out per experiment. Our findings show that the OpenCV implementation got the best performance, which can be improved by increasing the sample size per emotion during the training step.
Název v anglickém jazyce
Comparing the Performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs
Popis výsledku anglicky
Emotions represent feelings about people in several situations. Various machine learning algorithms have been developed for emotion detection in a multimedia element, such as an image or a video. These techniques can be measured by comparing their accuracy with a given dataset in order to determine which algorithm can be selected among others. This paper deals with the comparison of three implementations of emotion recognition in faces, each implemented with specific technology. OpenCV is an open-source library of functions and packages mostly used for computer-vision analysis and applications. Cognitive services, as well as Google Cloud AI, are sets of APIs which provide machine learning and artificial intelligence algorithms to develop smart applications capable of integrate computer-vision, speech, knowledge, and language processing features. Three Android mobile applications were developed in order to test the performance between an OpenCV algorithm for emotion recognition, an implementation of Emotion cognitive service, and a Google Cloud Vision deployment for emotion-detection in faces. For this research, one thousand tests were carried out per experiment. Our findings show that the OpenCV implementation got the best performance, which can be improved by increasing the sample size per emotion during the training step.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
WSEAS Transactions on Information Science and Applications
ISSN
1790-0832
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
GR - Řecká republika
Počet stran výsledku
7
Strana od-do
184-190
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—