Elliott waves classification by means of neural and pseudo neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F18%3A63520652" target="_blank" >RIV/70883521:28140/18:63520652 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28140/16:43875582 RIV/61988987:17310/18:A1901TN2
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s00500-016-2097-y" target="_blank" >http://link.springer.com/article/10.1007/s00500-016-2097-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-016-2097-y" target="_blank" >10.1007/s00500-016-2097-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elliott waves classification by means of neural and pseudo neural networks
Popis výsledku v původním jazyce
This article presents a comparative study of the classification of Elliott waves in data. Regarding the methods of classification, the paper deals with three approaches. The first one is a multilayer artificial neural network (ANN) with sigmoid activation function and backpropagation and Levenberg–Marquardt training algorithm. Second approach uses training algorithms of ANN but forms of activation functions of hidden nodes and nodes in output layers have been proposed by analytical programming with the differential evolution. The last approach offers results performed by synthesized pseudo neural networks where the symbolic regression is used for synthesis of a whole structure of the classifier, i.e., the relation between inputs and output(s) similar to ANN. In this case, meta-evolution version of analytic programming with differential evolution is used. In conclusion, all results of this experimental study were evaluated and compared mutually.
Název v anglickém jazyce
Elliott waves classification by means of neural and pseudo neural networks
Popis výsledku anglicky
This article presents a comparative study of the classification of Elliott waves in data. Regarding the methods of classification, the paper deals with three approaches. The first one is a multilayer artificial neural network (ANN) with sigmoid activation function and backpropagation and Levenberg–Marquardt training algorithm. Second approach uses training algorithms of ANN but forms of activation functions of hidden nodes and nodes in output layers have been proposed by analytical programming with the differential evolution. The last approach offers results performed by synthesized pseudo neural networks where the symbolic regression is used for synthesis of a whole structure of the classifier, i.e., the relation between inputs and output(s) similar to ANN. In this case, meta-evolution version of analytic programming with differential evolution is used. In conclusion, all results of this experimental study were evaluated and compared mutually.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soft computing
ISSN
1432-7643
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1803-1813
Kód UT WoS článku
000426761200007
EID výsledku v databázi Scopus
2-s2.0-84960157449