Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors-Possibilities and limitations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F18%3A63520887" target="_blank" >RIV/70883521:28140/18:63520887 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/1.5008830" target="_blank" >https://aip.scitation.org/doi/10.1063/1.5008830</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5008830" target="_blank" >10.1063/1.5008830</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors-Possibilities and limitations
Popis výsledku v původním jazyce
There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl( phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV
Název v anglickém jazyce
Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors-Possibilities and limitations
Popis výsledku anglicky
There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl( phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Physics
ISSN
0021-8979
e-ISSN
1089-7550
Svazek periodika
123
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"nestrankovano"
Kód UT WoS článku
000431147200120
EID výsledku v databázi Scopus
2-s2.0-85041805313