Distance based parameter adaptation for Success-History based Differential Evolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63522680" target="_blank" >RIV/70883521:28140/19:63522680 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210650218303043" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650218303043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2018.10.013" target="_blank" >10.1016/j.swevo.2018.10.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distance based parameter adaptation for Success-History based Differential Evolution
Popis výsledku v původním jazyce
This paper proposes a simple, yet effective, modification to scaling factor and crossover rate adaptation in Success-History based Adaptive Differential Evolution (SHADE), which can be used as a framework to all SHADE-based algorithms. The performance impact of the proposed method is shown on the real-parameter single objective optimization (CEC2015 and CEC2017) benchmark sets in 10, 30, 50, and 100 dimensions for all SHADE, L-SHADE (SHADE with linear decrease of population size), and jSO algorithms. The proposed distance based parameter adaptation is designed to address the premature convergence of SHADE–based algorithms in higher dimensional search spaces to maintain a longer exploration phase. This design effectiveness is supported by presenting a population clustering analysis, along with a population diversity measure. Also, the new distance based algorithm versions (Db_SHADE, DbL_SHADE, and DISH) have obtained significantly better optimization results than their canonical counterparts (SHADE, L_SHADE, and jSO) in 30, 50, and 100 dimensional functions.
Název v anglickém jazyce
Distance based parameter adaptation for Success-History based Differential Evolution
Popis výsledku anglicky
This paper proposes a simple, yet effective, modification to scaling factor and crossover rate adaptation in Success-History based Adaptive Differential Evolution (SHADE), which can be used as a framework to all SHADE-based algorithms. The performance impact of the proposed method is shown on the real-parameter single objective optimization (CEC2015 and CEC2017) benchmark sets in 10, 30, 50, and 100 dimensions for all SHADE, L-SHADE (SHADE with linear decrease of population size), and jSO algorithms. The proposed distance based parameter adaptation is designed to address the premature convergence of SHADE–based algorithms in higher dimensional search spaces to maintain a longer exploration phase. This design effectiveness is supported by presenting a population clustering analysis, along with a population diversity measure. Also, the new distance based algorithm versions (Db_SHADE, DbL_SHADE, and DISH) have obtained significantly better optimization results than their canonical counterparts (SHADE, L_SHADE, and jSO) in 30, 50, and 100 dimensional functions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
50
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000497252300020
EID výsledku v databázi Scopus
2-s2.0-85057032118