Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Outliners detection method for software effort estimation models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63522744" target="_blank" >RIV/70883521:28140/19:63522744 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-19807-7_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-19807-7_43</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-19807-7_43" target="_blank" >10.1007/978-3-030-19807-7_43</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Outliners detection method for software effort estimation models

  • Popis výsledku v původním jazyce

    Outliner detection methods are studied as an approach for simulated in-house dataset creation. In-house datasets are understood as an approach for increasing the estimation accuracy of the functional points-based estimation models. The method which was selected as the best option for outliners’ detection is the median absolute deviation. The product delivery rate was used as a parameter for the median absolution deviation method. The estimation accuracy was compared for a public dataset and simulated in-house datasets, using stepwise regression models.

  • Název v anglickém jazyce

    Outliners detection method for software effort estimation models

  • Popis výsledku anglicky

    Outliner detection methods are studied as an approach for simulated in-house dataset creation. In-house datasets are understood as an approach for increasing the estimation accuracy of the functional points-based estimation models. The method which was selected as the best option for outliners’ detection is the median absolute deviation. The product delivery rate was used as a parameter for the median absolution deviation method. The estimation accuracy was compared for a public dataset and simulated in-house datasets, using stepwise regression models.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SOFTWARE ENGINEERING METHODS IN INTELLIGENT ALGORITHMS, VOL 1

  • ISBN

    978-3-030-19806-0

  • ISSN

    2194-5357

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    444-455

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Praha

  • Datum konání akce

    24. 4. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000503384000043