On the Numerical Determination of Stability Regions in the Delay Space via Dominant Pole Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63522747" target="_blank" >RIV/70883521:28140/19:63522747 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/B9780128149287000019" target="_blank" >https://www.sciencedirect.com/science/article/pii/B9780128149287000019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-12-814928-7.00001-9" target="_blank" >10.1016/B978-0-12-814928-7.00001-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Numerical Determination of Stability Regions in the Delay Space via Dominant Pole Estimation
Popis výsledku v původním jazyce
This contribution intends to provide the reader with the presentation of a numerical gridding iterative algorithm to determine all stability regions within the prescribed area of the delay space. In every single grid node, the iterative estimation of the rightmost pole is computed based on the polynomial approximation of the characteristic quasipolynomial, by utilizing the knowledge of the dominant pole estimation in the nearest grid node. The polynomial approximation is made via the Taylor series based expansion in the vicinity of the closest dominant poles estimation, and by using the bilinear transformation followed with pre-warping for a discrete-time approximation. Exponential terms are subjected to a quadratic extrapolation method to get commensurate delays. Two-step Newton’s iteration method with averaging is used to detect imaginary axis crossings. Neutral delay case is concisely discussed as well. Two numerical examples demonstrate the accuracy and efficiency of the algorithm. Possible future directions of this research and algorithm modifications are proposed and discussed in brief as well.
Název v anglickém jazyce
On the Numerical Determination of Stability Regions in the Delay Space via Dominant Pole Estimation
Popis výsledku anglicky
This contribution intends to provide the reader with the presentation of a numerical gridding iterative algorithm to determine all stability regions within the prescribed area of the delay space. In every single grid node, the iterative estimation of the rightmost pole is computed based on the polynomial approximation of the characteristic quasipolynomial, by utilizing the knowledge of the dominant pole estimation in the nearest grid node. The polynomial approximation is made via the Taylor series based expansion in the vicinity of the closest dominant poles estimation, and by using the bilinear transformation followed with pre-warping for a discrete-time approximation. Exponential terms are subjected to a quadratic extrapolation method to get commensurate delays. Two-step Newton’s iteration method with averaging is used to detect imaginary axis crossings. Neutral delay case is concisely discussed as well. Two numerical examples demonstrate the accuracy and efficiency of the algorithm. Possible future directions of this research and algorithm modifications are proposed and discussed in brief as well.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1303" target="_blank" >LO1303: Podpora udržitelnosti a rozvoje Centra bezpečnostních, informačních a pokročilých technologií (CEBIA-Tech)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Stability, Control and Application of Time-Delay Systems
ISBN
978-0-12-814928-7
Počet stran výsledku
22
Strana od-do
1-22
Počet stran knihy
470
Název nakladatele
Elsevier
Místo vydání
Philadelphia
Kód UT WoS kapitoly
—