Differential transform algorithm for functional differential equations with time-dependent delays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63525249" target="_blank" >RIV/70883521:28140/20:63525249 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/20:PU136085
Výsledek na webu
<a href="https://www.hindawi.com/journals/complexity/2020/2854574/" target="_blank" >https://www.hindawi.com/journals/complexity/2020/2854574/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2020/2854574" target="_blank" >10.1155/2020/2854574</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential transform algorithm for functional differential equations with time-dependent delays
Popis výsledku v původním jazyce
An algorithm using the differential transformation which is convenient for finding numerical solutions to initial value problems for functional differential equations is proposed in this paper. We focus on retarded equations with delays which in general are functions of the independent variable. The delayed differential equation is turned into an ordinary differential equation using the method of steps. The ordinary differential equation is transformed into a recurrence relation in one variable using the differential transformation. Approximate solution has the form of a Taylor polynomial whose coefficients are determined by solving the recurrence relation. Practical implementation of the presented algorithm is demonstrated in an example of the initial value problem for a differential equation with nonlinear nonconstant delay. A two-dimensional neutral system of higher complexity with constant, nonconstant, and proportional delays has been chosen to show numerical performance of the algorithm. Results are compared against Matlab function DDENSD.
Název v anglickém jazyce
Differential transform algorithm for functional differential equations with time-dependent delays
Popis výsledku anglicky
An algorithm using the differential transformation which is convenient for finding numerical solutions to initial value problems for functional differential equations is proposed in this paper. We focus on retarded equations with delays which in general are functions of the independent variable. The delayed differential equation is turned into an ordinary differential equation using the method of steps. The ordinary differential equation is transformed into a recurrence relation in one variable using the differential transformation. Approximate solution has the form of a Taylor polynomial whose coefficients are determined by solving the recurrence relation. Practical implementation of the presented algorithm is demonstrated in an example of the initial value problem for a differential equation with nonlinear nonconstant delay. A two-dimensional neutral system of higher complexity with constant, nonconstant, and proportional delays has been chosen to show numerical performance of the algorithm. Results are compared against Matlab function DDENSD.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPLEXITY
ISSN
1076-2787
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000522423600004
EID výsledku v databázi Scopus
2-s2.0-85081256974