Applications of differential transform to boundary value problems for delayed differential equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU138048" target="_blank" >RIV/00216305:26620/20:PU138048 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/abs/10.1063/5.0026599" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/5.0026599</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0026599" target="_blank" >10.1063/5.0026599</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applications of differential transform to boundary value problems for delayed differential equations
Popis výsledku v původním jazyce
An application of the differential transformation is proposed in this paper which is convenient for finding approximate solutions to boundary value problems for functional differential equations. We focus on two-point boundary value problem for equations with constant delays. Delayed differential equation is turned into an ordinary differential equation using the method of steps. The ordinary differential equation is transformed into recurrence relation in one variable. Based on the structure of the studied boundary value problem, the solution to the recurrence relation depends on one real parameter. Using the boundary conditions leads to an equation with the unknown parameter as the single variable which occurs generally in infinitely many terms. Approximate solution has the form of a Taylor polynomial. Coefficients of the polynomial are determined by solving the recurrence relation and a truncated equation with respect to the unknown parameter. Particular steps of the algorithm are demonstrated in an example of two-point boundary value problem for a differential equation with one constant delay.
Název v anglickém jazyce
Applications of differential transform to boundary value problems for delayed differential equations
Popis výsledku anglicky
An application of the differential transformation is proposed in this paper which is convenient for finding approximate solutions to boundary value problems for functional differential equations. We focus on two-point boundary value problem for equations with constant delays. Delayed differential equation is turned into an ordinary differential equation using the method of steps. The ordinary differential equation is transformed into recurrence relation in one variable. Based on the structure of the studied boundary value problem, the solution to the recurrence relation depends on one real parameter. Using the boundary conditions leads to an equation with the unknown parameter as the single variable which occurs generally in infinitely many terms. Approximate solution has the form of a Taylor polynomial. Coefficients of the polynomial are determined by solving the recurrence relation and a truncated equation with respect to the unknown parameter. Particular steps of the algorithm are demonstrated in an example of two-point boundary value problem for a differential equation with one constant delay.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2019 (ICNAAM-2019)
ISBN
978-0-7354-4025-8
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
„340011-1“-„340011-4“
Název nakladatele
American Institute of Physics
Místo vydání
Melville (USA)
Místo konání akce
hotel Sheraton, Ixia, Rhodos
Datum konání akce
23. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—