Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electronic structure spectroscopy of organic semiconductors by energy resolvedelectrochemical impedance spectroscopy (ER-EIS)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63525479" target="_blank" >RIV/70883521:28140/20:63525479 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aip.scitation.org/doi/full/10.1063/5.0022289" target="_blank" >https://aip.scitation.org/doi/full/10.1063/5.0022289</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0022289" target="_blank" >10.1063/5.0022289</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electronic structure spectroscopy of organic semiconductors by energy resolvedelectrochemical impedance spectroscopy (ER-EIS)

  • Popis výsledku v původním jazyce

    Organic electronic applications are envisioned to address broad markets, which includes flexible displays, electronic papers, sensors, disposable and wearable electronics, and medical and biophysical applications, leading to a tremendous amount of interest from both academia and industry in the study of devices. These fields of science and technology constitute interdisciplinary fields that cover physics, chemistry, biology, and materials science, leading, as a wanted output, to the elucidation of physical and chemical properties, as well as structures, fabrication, and performance evaluation of devices and the creation of new knowledge underlying the operation of organic devices using new synthesized organic materials—organic semiconductors. We testify the situation when the available organic electronic applications sometimes lack a theoretical background. The cause may be the complicated properties of disordered, weak bounded, molecular materials with properties different from their inorganic counterparts. One of the basic information-rich resources is the electronic structure of organic semiconductors, elucidated by the methods, hardly possible to be transferred from the branch of inorganic semiconductors. Electrochemical spectroscopic methods, in general, and electrochemical impedance spectroscopy, in particular, tend and seem to fill this gap. In this Perspective article, the energy resolved-electrochemical impedance spectroscopic method for electronic structure studies of surface and bulk of organic semiconductors is presented, and its theoretical and implementation background is highlighted. To show the method’s properties and strength, both as to the wide energy and excessive dynamic range, the basic measurements on polymeric materials and D–A blends are introduced, and to highlight its broad applicability, the results on polysilanes degradability, gap engineering of non-fullerene D–A blends, and electron structure spectroscopy of an inorganic nanocrystalline film are highlighted. In the outlook and perspective, the electrolyte/ polymer interface will be studied in general and specifically devoted to the morphological, transport, and recombination properties of organic semiconductors and biophysical materials.

  • Název v anglickém jazyce

    Electronic structure spectroscopy of organic semiconductors by energy resolvedelectrochemical impedance spectroscopy (ER-EIS)

  • Popis výsledku anglicky

    Organic electronic applications are envisioned to address broad markets, which includes flexible displays, electronic papers, sensors, disposable and wearable electronics, and medical and biophysical applications, leading to a tremendous amount of interest from both academia and industry in the study of devices. These fields of science and technology constitute interdisciplinary fields that cover physics, chemistry, biology, and materials science, leading, as a wanted output, to the elucidation of physical and chemical properties, as well as structures, fabrication, and performance evaluation of devices and the creation of new knowledge underlying the operation of organic devices using new synthesized organic materials—organic semiconductors. We testify the situation when the available organic electronic applications sometimes lack a theoretical background. The cause may be the complicated properties of disordered, weak bounded, molecular materials with properties different from their inorganic counterparts. One of the basic information-rich resources is the electronic structure of organic semiconductors, elucidated by the methods, hardly possible to be transferred from the branch of inorganic semiconductors. Electrochemical spectroscopic methods, in general, and electrochemical impedance spectroscopy, in particular, tend and seem to fill this gap. In this Perspective article, the energy resolved-electrochemical impedance spectroscopic method for electronic structure studies of surface and bulk of organic semiconductors is presented, and its theoretical and implementation background is highlighted. To show the method’s properties and strength, both as to the wide energy and excessive dynamic range, the basic measurements on polymeric materials and D–A blends are introduced, and to highlight its broad applicability, the results on polysilanes degradability, gap engineering of non-fullerene D–A blends, and electron structure spectroscopy of an inorganic nanocrystalline film are highlighted. In the outlook and perspective, the electrolyte/ polymer interface will be studied in general and specifically devoted to the morphological, transport, and recombination properties of organic semiconductors and biophysical materials.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21001 - Nano-materials (production and properties)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Applied Physics

  • ISSN

    0021-8979

  • e-ISSN

  • Svazek periodika

    128

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    000585797700002

  • EID výsledku v databázi Scopus

    2-s2.0-85094557412