Dog face detection using yolo network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526298" target="_blank" >RIV/70883521:28140/20:63526298 - isvavai.cz</a>
Výsledek na webu
<a href="https://mendel-journal.org/index.php/mendel/article/view/121" target="_blank" >https://mendel-journal.org/index.php/mendel/article/view/121</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/mendel.2020.2.017" target="_blank" >10.13164/mendel.2020.2.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dog face detection using yolo network
Popis výsledku v původním jazyce
This work presents the real-world application of the object detection which belongs to one of the current research lines in computer vision. Researchers are commonly focused on human face detection. Compared to that, the current paper presents a challenging task of detecting a dog face instead that is an object with extensive variability in appearance. The system utilises YOLO network, a deep convolution neural network, to predict bounding boxes and class confidences simultaneously. This paper documents the extensive dataset of dog faces gathered from two different sources and the training procedure of the detector. The proposed system was designed for realization on mobile hardware. This Doggie Smile application helps to snapshot dogs at the moment when they face the camera. The proposed mobile application can simultaneously evaluate the gaze directions of three dogs in scene more than 13 times per second, measured on iPhone XR. The average precision of the dogface detection system is 0.92. © 2020, Brno University of Technology. All rights reserved.
Název v anglickém jazyce
Dog face detection using yolo network
Popis výsledku anglicky
This work presents the real-world application of the object detection which belongs to one of the current research lines in computer vision. Researchers are commonly focused on human face detection. Compared to that, the current paper presents a challenging task of detecting a dog face instead that is an object with extensive variability in appearance. The system utilises YOLO network, a deep convolution neural network, to predict bounding boxes and class confidences simultaneously. This paper documents the extensive dataset of dog faces gathered from two different sources and the training procedure of the detector. The proposed system was designed for realization on mobile hardware. This Doggie Smile application helps to snapshot dogs at the moment when they face the camera. The proposed mobile application can simultaneously evaluate the gaze directions of three dogs in scene more than 13 times per second, measured on iPhone XR. The average precision of the dogface detection system is 0.92. © 2020, Brno University of Technology. All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mendel
ISSN
1803-3814
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
17-22
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85098254118