Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dog face detection using yolo network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526298" target="_blank" >RIV/70883521:28140/20:63526298 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mendel-journal.org/index.php/mendel/article/view/121" target="_blank" >https://mendel-journal.org/index.php/mendel/article/view/121</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/mendel.2020.2.017" target="_blank" >10.13164/mendel.2020.2.017</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dog face detection using yolo network

  • Popis výsledku v původním jazyce

    This work presents the real-world application of the object detection which belongs to one of the current research lines in computer vision. Researchers are commonly focused on human face detection. Compared to that, the current paper presents a challenging task of detecting a dog face instead that is an object with extensive variability in appearance. The system utilises YOLO network, a deep convolution neural network, to predict bounding boxes and class confidences simultaneously. This paper documents the extensive dataset of dog faces gathered from two different sources and the training procedure of the detector. The proposed system was designed for realization on mobile hardware. This Doggie Smile application helps to snapshot dogs at the moment when they face the camera. The proposed mobile application can simultaneously evaluate the gaze directions of three dogs in scene more than 13 times per second, measured on iPhone XR. The average precision of the dogface detection system is 0.92. © 2020, Brno University of Technology. All rights reserved.

  • Název v anglickém jazyce

    Dog face detection using yolo network

  • Popis výsledku anglicky

    This work presents the real-world application of the object detection which belongs to one of the current research lines in computer vision. Researchers are commonly focused on human face detection. Compared to that, the current paper presents a challenging task of detecting a dog face instead that is an object with extensive variability in appearance. The system utilises YOLO network, a deep convolution neural network, to predict bounding boxes and class confidences simultaneously. This paper documents the extensive dataset of dog faces gathered from two different sources and the training procedure of the detector. The proposed system was designed for realization on mobile hardware. This Doggie Smile application helps to snapshot dogs at the moment when they face the camera. The proposed mobile application can simultaneously evaluate the gaze directions of three dogs in scene more than 13 times per second, measured on iPhone XR. The average precision of the dogface detection system is 0.92. © 2020, Brno University of Technology. All rights reserved.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mendel

  • ISSN

    1803-3814

  • e-ISSN

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    6

  • Strana od-do

    17-22

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85098254118