Review of current data mining techniques used in the software effort estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526959" target="_blank" >RIV/70883521:28140/20:63526959 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-63322-6_32" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-63322-6_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63322-6_32" target="_blank" >10.1007/978-3-030-63322-6_32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Review of current data mining techniques used in the software effort estimation
Popis výsledku v původním jazyce
Data Mining is a method of finding patterns from vast quantities of data and information. The data sources include databases, data centres, the internet, and other data storage forms; or data that is dynamically streaming into the network. Estimation of effort is very important in the cost estimation of a software development project, and very critical in the software life development cycle planning process. This paper offers a description of the latest data mining techniques used in estimating software effort, and these techniques are divided into two, namely: Classical and Modern, based on when they were developed and when they started to be used in business administration. The Classical techniques are the ones that have been in use for decades and are still relevant until today, while the Modern ones are the ones that have been introduced recently and have gained wide acceptance in the system. The Classical techniques are Statistical methods, Nearest Neighbours, Clustering and Regression Analysis, while Neural Networks, Rule Induction Systems and Decision Trees are included in the Modern techniques. This paper offers an overview of these strategies in terms of their features, benefits, drawbacks and use areas. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Review of current data mining techniques used in the software effort estimation
Popis výsledku anglicky
Data Mining is a method of finding patterns from vast quantities of data and information. The data sources include databases, data centres, the internet, and other data storage forms; or data that is dynamically streaming into the network. Estimation of effort is very important in the cost estimation of a software development project, and very critical in the software life development cycle planning process. This paper offers a description of the latest data mining techniques used in estimating software effort, and these techniques are divided into two, namely: Classical and Modern, based on when they were developed and when they started to be used in business administration. The Classical techniques are the ones that have been in use for decades and are still relevant until today, while the Modern ones are the ones that have been introduced recently and have gained wide acceptance in the system. The Classical techniques are Statistical methods, Nearest Neighbours, Clustering and Regression Analysis, while Neural Networks, Rule Induction Systems and Decision Trees are included in the Modern techniques. This paper offers an overview of these strategies in terms of their features, benefits, drawbacks and use areas. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing Volume 1294
ISBN
978-303063321-9
ISSN
21945357
e-ISSN
—
Počet stran výsledku
16
Strana od-do
393-408
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Vsetín
Datum konání akce
14. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—