A productivity optimising model for improving software effort estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526961" target="_blank" >RIV/70883521:28140/20:63526961 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-63322-6_62" target="_blank" >http://dx.doi.org/10.1007/978-3-030-63322-6_62</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63322-6_62" target="_blank" >10.1007/978-3-030-63322-6_62</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A productivity optimising model for improving software effort estimation
Popis výsledku v původním jazyce
The estimation of software development effort is a critical task for the effective management of any software industry. Despite the fact that it has been under development for a long time - along with many contributions from many authors seeking to improve the accuracy of software effort estimation, it is still of great interest to many researchers. This study proposed an improved effort estimation model, named the Productivity Optimising Model. This model was designed, based on the Function Points Measurement method and the Multiple Linear Regression model. The Multiple Linear Regression model was built based on the research of historical datasets in order to provide an estimation model so that one can determine the optimising productivity, and then it is easy to calculate the effort. The effort result of this model was compared to the others that were calculated by the Mean Value of Productivity of the tested dataset, and the Capers Jones method. It proved that proposed method gives better accuracy results than the other models. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
A productivity optimising model for improving software effort estimation
Popis výsledku anglicky
The estimation of software development effort is a critical task for the effective management of any software industry. Despite the fact that it has been under development for a long time - along with many contributions from many authors seeking to improve the accuracy of software effort estimation, it is still of great interest to many researchers. This study proposed an improved effort estimation model, named the Productivity Optimising Model. This model was designed, based on the Function Points Measurement method and the Multiple Linear Regression model. The Multiple Linear Regression model was built based on the research of historical datasets in order to provide an estimation model so that one can determine the optimising productivity, and then it is easy to calculate the effort. The effort result of this model was compared to the others that were calculated by the Mean Value of Productivity of the tested dataset, and the Capers Jones method. It proved that proposed method gives better accuracy results than the other models. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing Volume 1294
ISBN
978-303063321-9
ISSN
21945357
e-ISSN
—
Počet stran výsledku
12
Strana od-do
735-746
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Vsetín
Datum konání akce
14. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—