Explaining SOMA: The relation of stochastic perturbation to population diversity and parameter space coverage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63544458" target="_blank" >RIV/70883521:28140/21:63544458 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/pdf/10.1145/3449726.3463211" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3449726.3463211</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3449726.3463211" target="_blank" >10.1145/3449726.3463211</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explaining SOMA: The relation of stochastic perturbation to population diversity and parameter space coverage
Popis výsledku v původním jazyce
The Self-Organizing Migrating Algorithm (SOMA) is enjoying a renewed interest of the research community, following recent achievements in various application areas and renowned performance competitions. In this paper, we focus on the importance and effect of the perturbation operator in SOMA as the perturbation is one of the fundamental inner principles of SOMA. In this in-depth study, we present data, visualizations, and analysis of the effect of the perturbation on the population, its diversity and average movement patterns. We provide evidence that there is a direct relation between the perturbation intensity (set by control parameter prt) and the rate of diversity loss. The perturbation setting further affects the exploratory ability of the algorithm, as is demonstrated here by analysing the parameter space coverage of the population. We aim to provide insight and explanation of the impact of perturbation in SOMA for future researchers and practitioners. © 2021 ACM.
Název v anglickém jazyce
Explaining SOMA: The relation of stochastic perturbation to population diversity and parameter space coverage
Popis výsledku anglicky
The Self-Organizing Migrating Algorithm (SOMA) is enjoying a renewed interest of the research community, following recent achievements in various application areas and renowned performance competitions. In this paper, we focus on the importance and effect of the perturbation operator in SOMA as the perturbation is one of the fundamental inner principles of SOMA. In this in-depth study, we present data, visualizations, and analysis of the effect of the perturbation on the population, its diversity and average movement patterns. We provide evidence that there is a direct relation between the perturbation intensity (set by control parameter prt) and the rate of diversity loss. The perturbation setting further affects the exploratory ability of the algorithm, as is demonstrated here by analysing the parameter space coverage of the population. We aim to provide insight and explanation of the impact of perturbation in SOMA for future researchers and practitioners. © 2021 ACM.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion
ISBN
978-145038351-6
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1944-1952
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Lille
Datum konání akce
10. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—