Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

USE OF ARTIFICIAL INTELLIGENCE ELEMENTS IN PREDICTIVE PROCESS MANAGEMENT

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63549321" target="_blank" >RIV/70883521:28140/22:63549321 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    USE OF ARTIFICIAL INTELLIGENCE ELEMENTS IN PREDICTIVE PROCESS MANAGEMENT

  • Popis výsledku v původním jazyce

    Predictive process control is a method of regulation suitable for controlling various types of systems, which is based on the idea of using the prediction of future system behavior and its optimization. Normally, a system model is used to predict behavior, and therefore it is necessary for the correct function of predictive control to make its correct selection and determine its parameters so that the controlled system is described as accurately as possible. Another advantage of predictive control is the possibility of including signal restrictions directly in the controller. The result is the application of some elements of artificial intelligence in suitable areas of predictive control, especially the use of simple evolutionary algorithms in optimization and neural networks as nonlinear models. One of the chapters of the article describes the possibilities of using these elements. It is proved that in addition to classical optimization algorithms, it is also possible to use simple evolutionary algorithms for optimization of prediction, while the computational complexity can be comparable depending on the type of solved problem and settings. The article describes a suitable selection of model systems with slow dynamics, their derivation, and the creation of nonlinear models in the form of scalable neural networks. The potential advantage of this approach for the control of systems that are difficult to describe or for the control of systems whose mathematical-physical description is not known. The chapter of the article also deals with the possibility of using the found models on real systems and determining the necessary conditions and requirements for their application.

  • Název v anglickém jazyce

    USE OF ARTIFICIAL INTELLIGENCE ELEMENTS IN PREDICTIVE PROCESS MANAGEMENT

  • Popis výsledku anglicky

    Predictive process control is a method of regulation suitable for controlling various types of systems, which is based on the idea of using the prediction of future system behavior and its optimization. Normally, a system model is used to predict behavior, and therefore it is necessary for the correct function of predictive control to make its correct selection and determine its parameters so that the controlled system is described as accurately as possible. Another advantage of predictive control is the possibility of including signal restrictions directly in the controller. The result is the application of some elements of artificial intelligence in suitable areas of predictive control, especially the use of simple evolutionary algorithms in optimization and neural networks as nonlinear models. One of the chapters of the article describes the possibilities of using these elements. It is proved that in addition to classical optimization algorithms, it is also possible to use simple evolutionary algorithms for optimization of prediction, while the computational complexity can be comparable depending on the type of solved problem and settings. The article describes a suitable selection of model systems with slow dynamics, their derivation, and the creation of nonlinear models in the form of scalable neural networks. The potential advantage of this approach for the control of systems that are difficult to describe or for the control of systems whose mathematical-physical description is not known. The chapter of the article also deals with the possibility of using the found models on real systems and determining the necessary conditions and requirements for their application.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_018%2F0002381" target="_blank" >EF16_018/0002381: Rozvoj výzkumně zaměřených studijních programů na FAI</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 22nd International Multidisciplinary Scientific GeoConference SGEM 2022, Informatics, Geoinformatics and Remote Sensing

  • ISBN

    978-619-7603-40-8

  • ISSN

    1314-2704

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Název nakladatele

    STEF92 Technology Ltd.

  • Místo vydání

    Sofia

  • Místo konání akce

    Albena

  • Datum konání akce

    4. 7. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku