Predictive Control of Processes with Utilization of Artificial Intelligence Elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526196" target="_blank" >RIV/70883521:28140/20:63526196 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2020/086.pdf" target="_blank" >https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2020/086.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2507/31st.daaam.proceedings.086" target="_blank" >10.2507/31st.daaam.proceedings.086</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive Control of Processes with Utilization of Artificial Intelligence Elements
Popis výsledku v původním jazyce
Predictive process control is a method of regulation suitable for controlling various types of systems, which is based on the idea of using prediction of future system behavior and its optimization. Normally, a system model is used to predict behavior, and therefore it is necessary for the correct function of predictive control to make its correct selection and determine its parameters so that the controlled system is described as accurately as possible. Another advantage of predictive control is the possibility of including signal restrictions directly in the controller. The aim of the article is the application of some elements of artificial intelligence in suitable areas of predictive control, especially the use of simple evolutionary algorithms in optimization and neural networks as nonlinear models. The possibilities for using these elements are also described here. It is proved that in addition to classical optimization algorithms, it is possible to use simple evolutionary algorithms for optimization of prediction, while the computational complexity can be comparable depending on the type of the solved problem and settings. One chapter of the article deals with the selection of suitable model systems with slow dynamics, their derivation, and the creation of nonlinear models in the form of scalable neural networks. The potential advantage of this approach for the control of systems that are difficult to describe or for the control of systems whose mathematical-physical description is not known was proved in the work. Finally, there are recommended options for deploying the found models on real systems and determining the necessary conditions and requirements for their application.
Název v anglickém jazyce
Predictive Control of Processes with Utilization of Artificial Intelligence Elements
Popis výsledku anglicky
Predictive process control is a method of regulation suitable for controlling various types of systems, which is based on the idea of using prediction of future system behavior and its optimization. Normally, a system model is used to predict behavior, and therefore it is necessary for the correct function of predictive control to make its correct selection and determine its parameters so that the controlled system is described as accurately as possible. Another advantage of predictive control is the possibility of including signal restrictions directly in the controller. The aim of the article is the application of some elements of artificial intelligence in suitable areas of predictive control, especially the use of simple evolutionary algorithms in optimization and neural networks as nonlinear models. The possibilities for using these elements are also described here. It is proved that in addition to classical optimization algorithms, it is possible to use simple evolutionary algorithms for optimization of prediction, while the computational complexity can be comparable depending on the type of the solved problem and settings. One chapter of the article deals with the selection of suitable model systems with slow dynamics, their derivation, and the creation of nonlinear models in the form of scalable neural networks. The potential advantage of this approach for the control of systems that are difficult to describe or for the control of systems whose mathematical-physical description is not known was proved in the work. Finally, there are recommended options for deploying the found models on real systems and determining the necessary conditions and requirements for their application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Annals of DAAAM and Proceedings of the International DAAAM Symposium
ISBN
978-390273429-7
ISSN
17269679
e-ISSN
—
Počet stran výsledku
6
Strana od-do
626-631
Název nakladatele
DAAAM International Vienna
Místo vydání
Vienna
Místo konání akce
Mostar
Datum konání akce
21. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—