Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictive Control of Processes with Utilization of Artificial Intelligence Elements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526196" target="_blank" >RIV/70883521:28140/20:63526196 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2020/086.pdf" target="_blank" >https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2020/086.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2507/31st.daaam.proceedings.086" target="_blank" >10.2507/31st.daaam.proceedings.086</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictive Control of Processes with Utilization of Artificial Intelligence Elements

  • Popis výsledku v původním jazyce

    Predictive process control is a method of regulation suitable for controlling various types of systems, which is based on the idea of using prediction of future system behavior and its optimization. Normally, a system model is used to predict behavior, and therefore it is necessary for the correct function of predictive control to make its correct selection and determine its parameters so that the controlled system is described as accurately as possible. Another advantage of predictive control is the possibility of including signal restrictions directly in the controller. The aim of the article is the application of some elements of artificial intelligence in suitable areas of predictive control, especially the use of simple evolutionary algorithms in optimization and neural networks as nonlinear models. The possibilities for using these elements are also described here. It is proved that in addition to classical optimization algorithms, it is possible to use simple evolutionary algorithms for optimization of prediction, while the computational complexity can be comparable depending on the type of the solved problem and settings. One chapter of the article deals with the selection of suitable model systems with slow dynamics, their derivation, and the creation of nonlinear models in the form of scalable neural networks. The potential advantage of this approach for the control of systems that are difficult to describe or for the control of systems whose mathematical-physical description is not known was proved in the work. Finally, there are recommended options for deploying the found models on real systems and determining the necessary conditions and requirements for their application.

  • Název v anglickém jazyce

    Predictive Control of Processes with Utilization of Artificial Intelligence Elements

  • Popis výsledku anglicky

    Predictive process control is a method of regulation suitable for controlling various types of systems, which is based on the idea of using prediction of future system behavior and its optimization. Normally, a system model is used to predict behavior, and therefore it is necessary for the correct function of predictive control to make its correct selection and determine its parameters so that the controlled system is described as accurately as possible. Another advantage of predictive control is the possibility of including signal restrictions directly in the controller. The aim of the article is the application of some elements of artificial intelligence in suitable areas of predictive control, especially the use of simple evolutionary algorithms in optimization and neural networks as nonlinear models. The possibilities for using these elements are also described here. It is proved that in addition to classical optimization algorithms, it is possible to use simple evolutionary algorithms for optimization of prediction, while the computational complexity can be comparable depending on the type of the solved problem and settings. One chapter of the article deals with the selection of suitable model systems with slow dynamics, their derivation, and the creation of nonlinear models in the form of scalable neural networks. The potential advantage of this approach for the control of systems that are difficult to describe or for the control of systems whose mathematical-physical description is not known was proved in the work. Finally, there are recommended options for deploying the found models on real systems and determining the necessary conditions and requirements for their application.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Annals of DAAAM and Proceedings of the International DAAAM Symposium

  • ISBN

    978-390273429-7

  • ISSN

    17269679

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    626-631

  • Název nakladatele

    DAAAM International Vienna

  • Místo vydání

    Vienna

  • Místo konání akce

    Mostar

  • Datum konání akce

    21. 10. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku