Student research abstract: Mining high average utility pattern using bio-inspired algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556560" target="_blank" >RIV/70883521:28140/22:63556560 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3477314.3506970" target="_blank" >http://dx.doi.org/10.1145/3477314.3506970</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3477314.3506970" target="_blank" >10.1145/3477314.3506970</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Student research abstract: Mining high average utility pattern using bio-inspired algorithm
Popis výsledku v původním jazyce
High average utility pattern (itemset) Mining (HAUIM) is a necessary research problem in the field of knowledge discovery and data mining. Several algorithms have been proposed to mine high average-utility itemsets (HAUIs). Nonetheless, the large search space leads to poor performance because of excessive execution time and memory usage. To handle this limitation, particle swarm optimization (PSO) is applied to mine HAUIs. In this paper, an effective Binary PSO-based algorithm namely HAUIM-BPSO is proposed to explore HAUI efficiently. In general, HAUIM-BPSO first sets the number of discovered potential high average-utility 1-itemsets (1-PHAUIs) as the size of a particle based on average utility upper bound (AUUB) property. The sigmoid function is also used in the updating process of the individual of the proposed HAUIM-BPSO algorithm. Substantial experiments conducted on publicly available datasets show that the proposed algorithm has better results than existing state-of-the-art algorithms in terms of runtime which can significantly reduce the combinational problem, memory usage, and convergence speed. © 2022 Owner/Author.
Název v anglickém jazyce
Student research abstract: Mining high average utility pattern using bio-inspired algorithm
Popis výsledku anglicky
High average utility pattern (itemset) Mining (HAUIM) is a necessary research problem in the field of knowledge discovery and data mining. Several algorithms have been proposed to mine high average-utility itemsets (HAUIs). Nonetheless, the large search space leads to poor performance because of excessive execution time and memory usage. To handle this limitation, particle swarm optimization (PSO) is applied to mine HAUIs. In this paper, an effective Binary PSO-based algorithm namely HAUIM-BPSO is proposed to explore HAUI efficiently. In general, HAUIM-BPSO first sets the number of discovered potential high average-utility 1-itemsets (1-PHAUIs) as the size of a particle based on average utility upper bound (AUUB) property. The sigmoid function is also used in the updating process of the individual of the proposed HAUIM-BPSO algorithm. Substantial experiments conducted on publicly available datasets show that the proposed algorithm has better results than existing state-of-the-art algorithms in terms of runtime which can significantly reduce the combinational problem, memory usage, and convergence speed. © 2022 Owner/Author.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the ACM Symposium on Applied Computing
ISBN
978-1-4503-8713-2
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
445-448
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
on-line
Datum konání akce
25. 4. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—