Toward applying agglomerative hierarchical clustering in improving the software development effort estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556599" target="_blank" >RIV/70883521:28140/22:63556599 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-09070-7_30" target="_blank" >http://dx.doi.org/10.1007/978-3-031-09070-7_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-09070-7_30" target="_blank" >10.1007/978-3-031-09070-7_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Toward applying agglomerative hierarchical clustering in improving the software development effort estimation
Popis výsledku v původním jazyce
Background: There are many studies on the effect of data clustering on the effort estimation process. Most of them are on partitioning and density-based clustering, and some use hierarchical clustering but fewer details on the linkage methods. Aim: we concentrate on the aspect of the agglomerative hierarchical clustering algorithm’s effectiveness on the accuracy of the effort estimation. Method: We used the agglomerative hierarchical clustering algorithm to group the data into clusters then performed the IFPUG FPA method for effort estimation. The ISBSG dataset was used in this study. The number of clusters is determined using the dendrogram’s cut points. Different cut points and linkage methods were employed to cluster the dataset for the comparison. The estimated results of these clusters were compared with the result from the whole dataset without clustering. Result: with the selected number of clusters, results are consistently better than without clustering with all selected evaluation criteria. Conclusion: the accuracy of the effort estimation can be significantly improved when using agglomerative hierarchical clustering. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Toward applying agglomerative hierarchical clustering in improving the software development effort estimation
Popis výsledku anglicky
Background: There are many studies on the effect of data clustering on the effort estimation process. Most of them are on partitioning and density-based clustering, and some use hierarchical clustering but fewer details on the linkage methods. Aim: we concentrate on the aspect of the agglomerative hierarchical clustering algorithm’s effectiveness on the accuracy of the effort estimation. Method: We used the agglomerative hierarchical clustering algorithm to group the data into clusters then performed the IFPUG FPA method for effort estimation. The ISBSG dataset was used in this study. The number of clusters is determined using the dendrogram’s cut points. Different cut points and linkage methods were employed to cluster the dataset for the comparison. The estimated results of these clusters were compared with the result from the whole dataset without clustering. Result: with the selected number of clusters, results are consistently better than without clustering with all selected evaluation criteria. Conclusion: the accuracy of the effort estimation can be significantly improved when using agglomerative hierarchical clustering. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-3-031-09069-1
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
19
Strana od-do
353-371
Název nakladatele
Springer International Publishing AG
Místo vydání
Basel
Místo konání akce
on-line
Datum konání akce
26. 4. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000893645700030