Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556598" target="_blank" >RIV/70883521:28140/22:63556598 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21967-2_21" target="_blank" >10.1007/978-3-031-21967-2_21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation
Popis výsledku v původním jazyce
Background: The influence of data clustering on the effort estimating process has been studied extensively. Studies focus on partitioning and density-based clustering, and some use hierarchical clustering, but most focus on software development effort estimation. Aim: We focus on the Gaussian Mixture Model algorithm’s effectiveness in the software enhancement effort estimation. Method: We used the Gaussian Mixture Model clustering algorithm to cluster the dataset into clusters and then applied the IFPUG FPA method for effort estimation on these clusters. The ISBSG dataset was used in this study. The number of clusters is determined using the Elbow method with the Distortion score. Besides, the k-means algorithm was also used as the comparative algorithm. The baseline model was determined by using the FPA method on the entire dataset without clustering. Result: With the number of clusters selected as 4, on six evaluation criteria, MAE, MAPE, RMSE, MBRE, and MIBRE, the experimental results show the estimated accuracy using the FPA method on clustered data significantly better when compared with no clustering. Conclusion: the software enhancement effort estimation can be significantly improved when using the Gaussian Mixture Model clustering algorithm
Název v anglickém jazyce
Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation
Popis výsledku anglicky
Background: The influence of data clustering on the effort estimating process has been studied extensively. Studies focus on partitioning and density-based clustering, and some use hierarchical clustering, but most focus on software development effort estimation. Aim: We focus on the Gaussian Mixture Model algorithm’s effectiveness in the software enhancement effort estimation. Method: We used the Gaussian Mixture Model clustering algorithm to cluster the dataset into clusters and then applied the IFPUG FPA method for effort estimation on these clusters. The ISBSG dataset was used in this study. The number of clusters is determined using the Elbow method with the Distortion score. Besides, the k-means algorithm was also used as the comparative algorithm. The baseline model was determined by using the FPA method on the entire dataset without clustering. Result: With the number of clusters selected as 4, on six evaluation criteria, MAE, MAPE, RMSE, MBRE, and MIBRE, the experimental results show the estimated accuracy using the FPA method on clustered data significantly better when compared with no clustering. Conclusion: the software enhancement effort estimation can be significantly improved when using the Gaussian Mixture Model clustering algorithm
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-21966-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
14
Strana od-do
255-268
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Ho Chi Minh City
Datum konání akce
28. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000916496900021