A Fuzzy Paradigmatic Clustering Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10243412" target="_blank" >RIV/61989100:27510/19:10243412 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/journal/ifac-papersonline/vol/52/issue/13" target="_blank" >https://www.sciencedirect.com/journal/ifac-papersonline/vol/52/issue/13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2019.11.559" target="_blank" >10.1016/j.ifacol.2019.11.559</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Fuzzy Paradigmatic Clustering Algorithm
Popis výsledku v původním jazyce
Clustering algorithms resume the datasets into few number of data points such as centroids or medoids, which explain the entire dataset briefly. In the domain of data-driven machine learning, the more precision with the clustering rule leads directly to more precise classification, prediction, and recognition. We propose an efficient clustering method, which applies the paradigms - mainly 3D Gaussian model - to estimate the optimum cluster number, cluster border, and congestion coordinates to model the datasets of the natural distributions. This approach considers both qualitative and quantitative features of the dataset and calculates the best scale to analyze it. We used fuzzy logic to compare the models with data, to generate and rank the hypotheses, and finally to reject or accept the assumptions. The proposed approach which is called Fuzzy Gaussian Paradigmatic Clustering (FGPC) algorithm is used as the basis of a fast (with the complexity order of O(n)) and robust algorithm for identifying fuzzy models.
Název v anglickém jazyce
A Fuzzy Paradigmatic Clustering Algorithm
Popis výsledku anglicky
Clustering algorithms resume the datasets into few number of data points such as centroids or medoids, which explain the entire dataset briefly. In the domain of data-driven machine learning, the more precision with the clustering rule leads directly to more precise classification, prediction, and recognition. We propose an efficient clustering method, which applies the paradigms - mainly 3D Gaussian model - to estimate the optimum cluster number, cluster border, and congestion coordinates to model the datasets of the natural distributions. This approach considers both qualitative and quantitative features of the dataset and calculates the best scale to analyze it. We used fuzzy logic to compare the models with data, to generate and rank the hypotheses, and finally to reject or accept the assumptions. The proposed approach which is called Fuzzy Gaussian Paradigmatic Clustering (FGPC) algorithm is used as the basis of a fast (with the complexity order of O(n)) and robust algorithm for identifying fuzzy models.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15530S" target="_blank" >GA18-15530S: Multi Objective Optimization Application in Flexible Manufacturing and Project Scheduling Problems: Theory and Applications</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFAC-PapersOnLine. Volume 52, Issue 13
ISBN
—
ISSN
2405-8963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
2360-2365
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
Berlín
Datum konání akce
28. 8. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000504282400400