A Noise Resistant Credibilistic Fuzzy Clustering Algorithm on a Unit Hypersphere with Illustrations Using Expression Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402G4V" target="_blank" >RIV/61988987:17610/23:A2402G4V - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-16203-9_32" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16203-9_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16203-9_32" target="_blank" >10.1007/978-3-031-16203-9_32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Noise Resistant Credibilistic Fuzzy Clustering Algorithm on a Unit Hypersphere with Illustrations Using Expression Data
Popis výsledku v původním jazyce
This article presents a robust noise-resistant fuzzy-based algorithm for cancer class detection. High-throughput microarray technologies facilitate the generation of large-scale expression data; this data captures enough information to build classifiers to understand the molecular basis of a disease. The proposed approach built on the Credibilistic Fuzzy C-Means (CFCM) algorithm partitions data restricted to a p-dimensional unit hypersphere. CFCM was introduced to address the AQ2 noise sensitiveness of fuzzy-based procedures, but it is unstable and fails to capture local non-linear interactions. The introduced approach addresses these shortcomings. The experimental findings in this article focus on cancer expression datasets. The performance of the proposed approach is assessed with both internal and external measures. The fuzzy-based learning algorithms Fuzzy C-Means (FCM) and Hyperspherical Fuzzy C-Means (HFCM) are used for comparative analysis. The experimental findings indicate that the proposed approach can be used as a plausible tool for clustering cancer expression data.
Název v anglickém jazyce
A Noise Resistant Credibilistic Fuzzy Clustering Algorithm on a Unit Hypersphere with Illustrations Using Expression Data
Popis výsledku anglicky
This article presents a robust noise-resistant fuzzy-based algorithm for cancer class detection. High-throughput microarray technologies facilitate the generation of large-scale expression data; this data captures enough information to build classifiers to understand the molecular basis of a disease. The proposed approach built on the Credibilistic Fuzzy C-Means (CFCM) algorithm partitions data restricted to a p-dimensional unit hypersphere. CFCM was introduced to address the AQ2 noise sensitiveness of fuzzy-based procedures, but it is unstable and fails to capture local non-linear interactions. The introduced approach addresses these shortcomings. The experimental findings in this article focus on cancer expression datasets. The performance of the proposed approach is assessed with both internal and external measures. The fuzzy-based learning algorithms Fuzzy C-Means (FCM) and Hyperspherical Fuzzy C-Means (HFCM) are used for comparative analysis. The experimental findings indicate that the proposed approach can be used as a plausible tool for clustering cancer expression data.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making
ISBN
978-3-031-16202-2
Počet stran výsledku
27
Strana od-do
564-590
Počet stran knihy
721
Název nakladatele
Springer Cham
Místo vydání
Switzerland
Kód UT WoS kapitoly
—