Impact of Boundary Control Methods on Bound-constrained Optimization Benchmarking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63563658" target="_blank" >RIV/70883521:28140/23:63563658 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3583133.3595849" target="_blank" >https://dl.acm.org/doi/10.1145/3583133.3595849</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3583133.3595849" target="_blank" >10.1145/3583133.3595849</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Boundary Control Methods on Bound-constrained Optimization Benchmarking
Popis výsledku v původním jazyce
Despite initial indifference towards boundary control methods (BCM) in the context of metaheuristic algorithm design, benchmarking, and execution, our research demonstrates their critical importance. This study investigates how the choice of a particular BCM can profoundly influence the performance of competitive algorithms. We analyzed the top three algorithms from the 2017 and 2020 IEEE CEC competitions, posing the following question: Could a change in BCM usage alter an algorithm's overall performance and, consequently, its ranking among competitors? Our findings reveal that paying attention to BCMs can lead to significant improvements. The experiments revealed that BCM selection can significantly impact an algorithm's performance and, in some instances, its competition rank. However, most authors omitted to mention the implemented BCM, resulting in poor reproducibility and deviating from recommended benchmarking practices for metaheuristic algorithms. The conclusion is that the BCM should be considered another vital metaheuristics input variable for unambiguous reproducibility of results in benchmarking and for a better understanding of population dynamics.
Název v anglickém jazyce
Impact of Boundary Control Methods on Bound-constrained Optimization Benchmarking
Popis výsledku anglicky
Despite initial indifference towards boundary control methods (BCM) in the context of metaheuristic algorithm design, benchmarking, and execution, our research demonstrates their critical importance. This study investigates how the choice of a particular BCM can profoundly influence the performance of competitive algorithms. We analyzed the top three algorithms from the 2017 and 2020 IEEE CEC competitions, posing the following question: Could a change in BCM usage alter an algorithm's overall performance and, consequently, its ranking among competitors? Our findings reveal that paying attention to BCMs can lead to significant improvements. The experiments revealed that BCM selection can significantly impact an algorithm's performance and, in some instances, its competition rank. However, most authors omitted to mention the implemented BCM, resulting in poor reproducibility and deviating from recommended benchmarking practices for metaheuristic algorithms. The conclusion is that the BCM should be considered another vital metaheuristics input variable for unambiguous reproducibility of results in benchmarking and for a better understanding of population dynamics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
ISBN
979-840070120-7
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
25-26
Název nakladatele
Association for Computing Machinery, Inc
Místo vydání
New York
Místo konání akce
Lisbon
Datum konání akce
15. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—