Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Short-text semantic similarity (STSS): Techniques, challenges and future perspectives

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570518" target="_blank" >RIV/70883521:28140/23:63570518 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/13/6/3911" target="_blank" >https://www.mdpi.com/2076-3417/13/6/3911</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app13063911" target="_blank" >10.3390/app13063911</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Short-text semantic similarity (STSS): Techniques, challenges and future perspectives

  • Popis výsledku v původním jazyce

    In natural language processing, short-text semantic similarity (STSS) is a very prominent field. It has a significant impact on a broad range of applications, such as question-answering systems, information retrieval, entity recognition, text analytics, sentiment classification, and so on. Despite their widespread use, many traditional machine learning techniques are incapable of identifying the semantics of short text. Traditional methods are based on ontologies, knowledge graphs, and corpus-based methods. The performance of these methods is influenced by the manually defined rules. Applying such measures is still difficult, since it poses various semantic challenges. In the existing literature, the most recent advances in short-text semantic similarity (STSS) research are not included. This study presents the systematic literature review (SLR) with the aim to (i) explain short sentence barriers in semantic similarity, (ii) identify the most appropriate standard deep learning techniques for the semantics of a short text, (iii) classify the language models that produce high-level contextual semantic information, (iv) determine appropriate datasets that are only intended for short text, and (v) highlight research challenges and proposed future improvements. To the best of our knowledge, we have provided an in-depth, comprehensive, and systematic review of short text semantic similarity trends, which will assist the researchers to reuse and enhance the semantic information.

  • Název v anglickém jazyce

    Short-text semantic similarity (STSS): Techniques, challenges and future perspectives

  • Popis výsledku anglicky

    In natural language processing, short-text semantic similarity (STSS) is a very prominent field. It has a significant impact on a broad range of applications, such as question-answering systems, information retrieval, entity recognition, text analytics, sentiment classification, and so on. Despite their widespread use, many traditional machine learning techniques are incapable of identifying the semantics of short text. Traditional methods are based on ontologies, knowledge graphs, and corpus-based methods. The performance of these methods is influenced by the manually defined rules. Applying such measures is still difficult, since it poses various semantic challenges. In the existing literature, the most recent advances in short-text semantic similarity (STSS) research are not included. This study presents the systematic literature review (SLR) with the aim to (i) explain short sentence barriers in semantic similarity, (ii) identify the most appropriate standard deep learning techniques for the semantics of a short text, (iii) classify the language models that produce high-level contextual semantic information, (iv) determine appropriate datasets that are only intended for short text, and (v) highlight research challenges and proposed future improvements. To the best of our knowledge, we have provided an in-depth, comprehensive, and systematic review of short text semantic similarity trends, which will assist the researchers to reuse and enhance the semantic information.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    APPLIED SCIENCES-BASEL

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    30

  • Strana od-do

    1-30

  • Kód UT WoS článku

    000954097200001

  • EID výsledku v databázi Scopus

    2-s2.0-85152052419