Short-text semantic similarity (STSS): Techniques, challenges and future perspectives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570518" target="_blank" >RIV/70883521:28140/23:63570518 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/13/6/3911" target="_blank" >https://www.mdpi.com/2076-3417/13/6/3911</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app13063911" target="_blank" >10.3390/app13063911</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short-text semantic similarity (STSS): Techniques, challenges and future perspectives
Popis výsledku v původním jazyce
In natural language processing, short-text semantic similarity (STSS) is a very prominent field. It has a significant impact on a broad range of applications, such as question-answering systems, information retrieval, entity recognition, text analytics, sentiment classification, and so on. Despite their widespread use, many traditional machine learning techniques are incapable of identifying the semantics of short text. Traditional methods are based on ontologies, knowledge graphs, and corpus-based methods. The performance of these methods is influenced by the manually defined rules. Applying such measures is still difficult, since it poses various semantic challenges. In the existing literature, the most recent advances in short-text semantic similarity (STSS) research are not included. This study presents the systematic literature review (SLR) with the aim to (i) explain short sentence barriers in semantic similarity, (ii) identify the most appropriate standard deep learning techniques for the semantics of a short text, (iii) classify the language models that produce high-level contextual semantic information, (iv) determine appropriate datasets that are only intended for short text, and (v) highlight research challenges and proposed future improvements. To the best of our knowledge, we have provided an in-depth, comprehensive, and systematic review of short text semantic similarity trends, which will assist the researchers to reuse and enhance the semantic information.
Název v anglickém jazyce
Short-text semantic similarity (STSS): Techniques, challenges and future perspectives
Popis výsledku anglicky
In natural language processing, short-text semantic similarity (STSS) is a very prominent field. It has a significant impact on a broad range of applications, such as question-answering systems, information retrieval, entity recognition, text analytics, sentiment classification, and so on. Despite their widespread use, many traditional machine learning techniques are incapable of identifying the semantics of short text. Traditional methods are based on ontologies, knowledge graphs, and corpus-based methods. The performance of these methods is influenced by the manually defined rules. Applying such measures is still difficult, since it poses various semantic challenges. In the existing literature, the most recent advances in short-text semantic similarity (STSS) research are not included. This study presents the systematic literature review (SLR) with the aim to (i) explain short sentence barriers in semantic similarity, (ii) identify the most appropriate standard deep learning techniques for the semantics of a short text, (iii) classify the language models that produce high-level contextual semantic information, (iv) determine appropriate datasets that are only intended for short text, and (v) highlight research challenges and proposed future improvements. To the best of our knowledge, we have provided an in-depth, comprehensive, and systematic review of short text semantic similarity trends, which will assist the researchers to reuse and enhance the semantic information.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
13
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
30
Strana od-do
1-30
Kód UT WoS článku
000954097200001
EID výsledku v databázi Scopus
2-s2.0-85152052419