Leveraging Large Language Models for the generation of novel metaheuristic optimization algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570738" target="_blank" >RIV/70883521:28140/23:63570738 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3583133.3596401" target="_blank" >https://dl.acm.org/doi/10.1145/3583133.3596401</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3583133.3596401" target="_blank" >10.1145/3583133.3596401</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Leveraging Large Language Models for the generation of novel metaheuristic optimization algorithms
Popis výsledku v původním jazyce
In this paper, we investigate the potential of using Large Language Models (LLMs) such as GPT-4 to generate novel hybrid swarm intelligence optimization algorithms. We use the LLM to identify and decompose six well-performing swarm algorithms for continuous optimization: Particle Swarm Optimization (PSO), Cuckoo Search (CS), Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Self-Organizing Migrating Algorithm (SOMA), and Whale Optimization Algorithm (WOA). We leverage GPT-4 to propose a hybrid algorithm that combines the strengths of these techniques for two distinct use-case scenarios. Our focus is on the process itself and various challenges that emerge during the use of GPT-4 to fulfill a series of set tasks. Furthermore, we discuss the potential impact of LLM-generated algorithms in the metaheuristics domain and explore future research directions. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Název v anglickém jazyce
Leveraging Large Language Models for the generation of novel metaheuristic optimization algorithms
Popis výsledku anglicky
In this paper, we investigate the potential of using Large Language Models (LLMs) such as GPT-4 to generate novel hybrid swarm intelligence optimization algorithms. We use the LLM to identify and decompose six well-performing swarm algorithms for continuous optimization: Particle Swarm Optimization (PSO), Cuckoo Search (CS), Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Self-Organizing Migrating Algorithm (SOMA), and Whale Optimization Algorithm (WOA). We leverage GPT-4 to propose a hybrid algorithm that combines the strengths of these techniques for two distinct use-case scenarios. Our focus is on the process itself and various challenges that emerge during the use of GPT-4 to fulfill a series of set tasks. Furthermore, we discuss the potential impact of LLM-generated algorithms in the metaheuristics domain and explore future research directions. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
ISBN
979-840070120-7
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1812-1820
Název nakladatele
Association for Computing Machinery, Inc
Místo vydání
New York
Místo konání akce
Lisbon
Datum konání akce
15. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001117972600294