Investigating the Potential of AI-Driven Innovations for Enhancing Differential Evolution in Optimization Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63573938" target="_blank" >RIV/70883521:28140/23:63573938 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394233" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394233</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC53992.2023.10394233" target="_blank" >10.1109/SMC53992.2023.10394233</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigating the Potential of AI-Driven Innovations for Enhancing Differential Evolution in Optimization Tasks
Popis výsledku v původním jazyce
In recent years, artificial intelligence (AI) and machine learning have demonstrated remarkable potential in various application domains, including optimization. This study investigates the process of leveraging AI, particularly large language models (LLMs), to enhance the performance of metaheuristics, with a focus on the well-established Differential Evolution (DE) algorithm. We employ GPT, a state-of-the-art LLM, to propose an improved mutation strategy based on a dynamic switching mechanism, which is then integrated into the DE algorithm. Throughout the investigation, we also observe and analyze any errors or limitations the LLM might exhibit. We conduct extensive experiments on a comprehensive set of 30 benchmark functions, comparing the performance of the proposed AI-inspired strategy with the standard DE algorithm. The results suggest that the AI-driven dynamic switching mutation strategy provides a competitive edge in terms of solution quality, showcasing the potential of using AI to guide the development of improved optimization algorithms. This work not only highlights the effectiveness of the proposed strategy but also contributes to the understanding of the process of using LLMs for enhancing metaheuristics and the challenges involved therein.
Název v anglickém jazyce
Investigating the Potential of AI-Driven Innovations for Enhancing Differential Evolution in Optimization Tasks
Popis výsledku anglicky
In recent years, artificial intelligence (AI) and machine learning have demonstrated remarkable potential in various application domains, including optimization. This study investigates the process of leveraging AI, particularly large language models (LLMs), to enhance the performance of metaheuristics, with a focus on the well-established Differential Evolution (DE) algorithm. We employ GPT, a state-of-the-art LLM, to propose an improved mutation strategy based on a dynamic switching mechanism, which is then integrated into the DE algorithm. Throughout the investigation, we also observe and analyze any errors or limitations the LLM might exhibit. We conduct extensive experiments on a comprehensive set of 30 benchmark functions, comparing the performance of the proposed AI-inspired strategy with the standard DE algorithm. The results suggest that the AI-driven dynamic switching mutation strategy provides a competitive edge in terms of solution quality, showcasing the potential of using AI to guide the development of improved optimization algorithms. This work not only highlights the effectiveness of the proposed strategy but also contributes to the understanding of the process of using LLMs for enhancing metaheuristics and the challenges involved therein.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISBN
979-8-3503-3703-7
ISSN
1062-922X
e-ISSN
2577-1655
Počet stran výsledku
6
Strana od-do
1070-1075
Název nakladatele
IEEE
Místo vydání
New Jersey, Piscataway
Místo konání akce
Honolulu
Datum konání akce
1. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—