Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570958" target="_blank" >RIV/70883521:28140/23:63570958 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10304119" target="_blank" >https://ieeexplore.ieee.org/document/10304119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3329369" target="_blank" >10.1109/ACCESS.2023.3329369</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets
Popis výsledku v původním jazyce
This study embarks on an in-depth analysis of the performance of various kernel functions, namely uniform, epanechnikov, triangular, and gaussian, in window-based and spectral clustering-based models. Employing seven distinct datasets, our approach evaluated both window sizes (25%, 50%, 75%, and 100%) and clustering clusters (ranging from 1 to 4). The kernel functions served as weighting functions for regression models, leading to the creation of 192 window-based and 192 clustering-based models. Our analysis underscores the dominance of the uniform kernel function. In most models where the Pred(0.25) was maximal and the Mean Absolute Error was minimal, the uniform kernel function was predominantly utilized. Further, our results exhibit varying outcomes between moving windows and spectral clustering across datasets. For instance, in the fpa-china dataset, while moving windows with a 50% size displayed no significant superiority over spectral-clustering with 1 cluster, spectral-clustering (1 cluster) demonstrated a significantly enhanced performance. However, in datasets like fpa-kitchenham, neither approach proved to be significantly better. This comprehensive exploration into the efficiency of kernel functions in moving windows and spectral-clustering models provides valuable insights for future research and applications in data modelling and analysis.
Název v anglickém jazyce
Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets
Popis výsledku anglicky
This study embarks on an in-depth analysis of the performance of various kernel functions, namely uniform, epanechnikov, triangular, and gaussian, in window-based and spectral clustering-based models. Employing seven distinct datasets, our approach evaluated both window sizes (25%, 50%, 75%, and 100%) and clustering clusters (ranging from 1 to 4). The kernel functions served as weighting functions for regression models, leading to the creation of 192 window-based and 192 clustering-based models. Our analysis underscores the dominance of the uniform kernel function. In most models where the Pred(0.25) was maximal and the Mean Absolute Error was minimal, the uniform kernel function was predominantly utilized. Further, our results exhibit varying outcomes between moving windows and spectral clustering across datasets. For instance, in the fpa-china dataset, while moving windows with a 50% size displayed no significant superiority over spectral-clustering with 1 cluster, spectral-clustering (1 cluster) demonstrated a significantly enhanced performance. However, in datasets like fpa-kitchenham, neither approach proved to be significantly better. This comprehensive exploration into the efficiency of kernel functions in moving windows and spectral-clustering models provides valuable insights for future research and applications in data modelling and analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
126335-126351
Kód UT WoS článku
001111143300001
EID výsledku v databázi Scopus
2-s2.0-85177567332