Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570958" target="_blank" >RIV/70883521:28140/23:63570958 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10304119" target="_blank" >https://ieeexplore.ieee.org/document/10304119</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3329369" target="_blank" >10.1109/ACCESS.2023.3329369</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets

  • Popis výsledku v původním jazyce

    This study embarks on an in-depth analysis of the performance of various kernel functions, namely uniform, epanechnikov, triangular, and gaussian, in window-based and spectral clustering-based models. Employing seven distinct datasets, our approach evaluated both window sizes (25%, 50%, 75%, and 100%) and clustering clusters (ranging from 1 to 4). The kernel functions served as weighting functions for regression models, leading to the creation of 192 window-based and 192 clustering-based models. Our analysis underscores the dominance of the uniform kernel function. In most models where the Pred(0.25) was maximal and the Mean Absolute Error was minimal, the uniform kernel function was predominantly utilized. Further, our results exhibit varying outcomes between moving windows and spectral clustering across datasets. For instance, in the fpa-china dataset, while moving windows with a 50% size displayed no significant superiority over spectral-clustering with 1 cluster, spectral-clustering (1 cluster) demonstrated a significantly enhanced performance. However, in datasets like fpa-kitchenham, neither approach proved to be significantly better. This comprehensive exploration into the efficiency of kernel functions in moving windows and spectral-clustering models provides valuable insights for future research and applications in data modelling and analysis.

  • Název v anglickém jazyce

    Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets

  • Popis výsledku anglicky

    This study embarks on an in-depth analysis of the performance of various kernel functions, namely uniform, epanechnikov, triangular, and gaussian, in window-based and spectral clustering-based models. Employing seven distinct datasets, our approach evaluated both window sizes (25%, 50%, 75%, and 100%) and clustering clusters (ranging from 1 to 4). The kernel functions served as weighting functions for regression models, leading to the creation of 192 window-based and 192 clustering-based models. Our analysis underscores the dominance of the uniform kernel function. In most models where the Pred(0.25) was maximal and the Mean Absolute Error was minimal, the uniform kernel function was predominantly utilized. Further, our results exhibit varying outcomes between moving windows and spectral clustering across datasets. For instance, in the fpa-china dataset, while moving windows with a 50% size displayed no significant superiority over spectral-clustering with 1 cluster, spectral-clustering (1 cluster) demonstrated a significantly enhanced performance. However, in datasets like fpa-kitchenham, neither approach proved to be significantly better. This comprehensive exploration into the efficiency of kernel functions in moving windows and spectral-clustering models provides valuable insights for future research and applications in data modelling and analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    126335-126351

  • Kód UT WoS článku

    001111143300001

  • EID výsledku v databázi Scopus

    2-s2.0-85177567332