Maximizing efficiency: A comparative study of SOMA variants and constraint handling methods for time delay system optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570998" target="_blank" >RIV/70883521:28140/23:63570998 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3583133.3596417" target="_blank" >https://dl.acm.org/doi/10.1145/3583133.3596417</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3583133.3596417" target="_blank" >10.1145/3583133.3596417</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximizing efficiency: A comparative study of SOMA variants and constraint handling methods for time delay system optimization
Popis výsledku v původním jazyce
This paper presents an experimental study that compares four adaptive variants of the self-organizing migrating algorithm (SOMA). Each variant uses three different constraint handling methods for the optimization of a time delay system model. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delayed systems to develop more effective and efficient control strategies and precise model identifications. The study includes a detailed description of the selected variants of the SOMA and the adaptive mechanisms used. A complex workflow of experiments is described, and the results and discussion are presented. The experimental results highlight the effectiveness of the SOMA variants with specific constraint handling methods for time delay system optimization. Overall, this study contributes to the understanding of the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of the SOMA variants and can help guide the selection of appropriate constraint handling methods and the adaptive mechanisms of metaheuristics. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Název v anglickém jazyce
Maximizing efficiency: A comparative study of SOMA variants and constraint handling methods for time delay system optimization
Popis výsledku anglicky
This paper presents an experimental study that compares four adaptive variants of the self-organizing migrating algorithm (SOMA). Each variant uses three different constraint handling methods for the optimization of a time delay system model. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delayed systems to develop more effective and efficient control strategies and precise model identifications. The study includes a detailed description of the selected variants of the SOMA and the adaptive mechanisms used. A complex workflow of experiments is described, and the results and discussion are presented. The experimental results highlight the effectiveness of the SOMA variants with specific constraint handling methods for time delay system optimization. Overall, this study contributes to the understanding of the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of the SOMA variants and can help guide the selection of appropriate constraint handling methods and the adaptive mechanisms of metaheuristics. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-45465L" target="_blank" >GF21-45465L: Metaheuristicky založená parametrická optimalizace modelů a řídicích systémů s dopravním zpožděním</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
ISBN
979-840070120-7
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1821-1829
Název nakladatele
Association for Computing Machinery, Inc
Místo vydání
New York
Místo konání akce
Lisbon
Datum konání akce
15. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001117972600295