Efficient Time-Delay System Optimization with Auto-Configured Metaheuristics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63573979" target="_blank" >RIV/70883521:28140/23:63573979 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394087&tag=1" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394087&tag=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC53992.2023.10394087" target="_blank" >10.1109/SMC53992.2023.10394087</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Time-Delay System Optimization with Auto-Configured Metaheuristics
Popis výsledku v původním jazyce
This paper presents an experimental study that compares the performance of four selected metaheuristic algorithms for optimizing a time delay system model. Time delay system models are complex and challenging to optimize due to their inherent characteristics, such as non-linearity, multimodality, and constraints. The study includes an explanation of the choice and core functionality of the selected algorithms, which are both baseline and state-of-the-art variants of self-organizing migrating algorithm (SOMA), state-of-the-art variant from the Success-History-based Adaptive Differential Evolution family of algorithms, with emphasis on diverse search (DISH algorithm), and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. The hyperparameters of the metaheuristic algorithms were set using the iRace automatic algorithm configuration framework. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delay systems to develop more effective and efficient control strategies and precise model identifications. The experimental results highlight the effectiveness of the state- of-the-art algorithms with specific adaptive mechanisms like population organization process, diverse search and adaptation mechanisms ensuring a gradual transition from exploration to exploitation. Overall, this study contributes to understanding the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of modern metaheuristic algorithms and can help guide the selection of appropriate adaptive mechanisms of metaheuristics.
Název v anglickém jazyce
Efficient Time-Delay System Optimization with Auto-Configured Metaheuristics
Popis výsledku anglicky
This paper presents an experimental study that compares the performance of four selected metaheuristic algorithms for optimizing a time delay system model. Time delay system models are complex and challenging to optimize due to their inherent characteristics, such as non-linearity, multimodality, and constraints. The study includes an explanation of the choice and core functionality of the selected algorithms, which are both baseline and state-of-the-art variants of self-organizing migrating algorithm (SOMA), state-of-the-art variant from the Success-History-based Adaptive Differential Evolution family of algorithms, with emphasis on diverse search (DISH algorithm), and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. The hyperparameters of the metaheuristic algorithms were set using the iRace automatic algorithm configuration framework. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delay systems to develop more effective and efficient control strategies and precise model identifications. The experimental results highlight the effectiveness of the state- of-the-art algorithms with specific adaptive mechanisms like population organization process, diverse search and adaptation mechanisms ensuring a gradual transition from exploration to exploitation. Overall, this study contributes to understanding the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of modern metaheuristic algorithms and can help guide the selection of appropriate adaptive mechanisms of metaheuristics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-45465L" target="_blank" >GF21-45465L: Metaheuristicky založená parametrická optimalizace modelů a řídicích systémů s dopravním zpožděním</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISBN
979-8-3503-3703-7
ISSN
1062-922X
e-ISSN
2577-1655
Počet stran výsledku
6
Strana od-do
1084-1089
Název nakladatele
IEEE
Místo vydání
New Jersey, Piscataway
Místo konání akce
Honolulu
Datum konání akce
1. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—