Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient Time-Delay System Optimization with Auto-Configured Metaheuristics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63573979" target="_blank" >RIV/70883521:28140/23:63573979 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394087&tag=1" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394087&tag=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SMC53992.2023.10394087" target="_blank" >10.1109/SMC53992.2023.10394087</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient Time-Delay System Optimization with Auto-Configured Metaheuristics

  • Popis výsledku v původním jazyce

    This paper presents an experimental study that compares the performance of four selected metaheuristic algorithms for optimizing a time delay system model. Time delay system models are complex and challenging to optimize due to their inherent characteristics, such as non-linearity, multimodality, and constraints. The study includes an explanation of the choice and core functionality of the selected algorithms, which are both baseline and state-of-the-art variants of self-organizing migrating algorithm (SOMA), state-of-the-art variant from the Success-History-based Adaptive Differential Evolution family of algorithms, with emphasis on diverse search (DISH algorithm), and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. The hyperparameters of the metaheuristic algorithms were set using the iRace automatic algorithm configuration framework. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delay systems to develop more effective and efficient control strategies and precise model identifications. The experimental results highlight the effectiveness of the state- of-the-art algorithms with specific adaptive mechanisms like population organization process, diverse search and adaptation mechanisms ensuring a gradual transition from exploration to exploitation. Overall, this study contributes to understanding the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of modern metaheuristic algorithms and can help guide the selection of appropriate adaptive mechanisms of metaheuristics.

  • Název v anglickém jazyce

    Efficient Time-Delay System Optimization with Auto-Configured Metaheuristics

  • Popis výsledku anglicky

    This paper presents an experimental study that compares the performance of four selected metaheuristic algorithms for optimizing a time delay system model. Time delay system models are complex and challenging to optimize due to their inherent characteristics, such as non-linearity, multimodality, and constraints. The study includes an explanation of the choice and core functionality of the selected algorithms, which are both baseline and state-of-the-art variants of self-organizing migrating algorithm (SOMA), state-of-the-art variant from the Success-History-based Adaptive Differential Evolution family of algorithms, with emphasis on diverse search (DISH algorithm), and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. The hyperparameters of the metaheuristic algorithms were set using the iRace automatic algorithm configuration framework. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delay systems to develop more effective and efficient control strategies and precise model identifications. The experimental results highlight the effectiveness of the state- of-the-art algorithms with specific adaptive mechanisms like population organization process, diverse search and adaptation mechanisms ensuring a gradual transition from exploration to exploitation. Overall, this study contributes to understanding the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of modern metaheuristic algorithms and can help guide the selection of appropriate adaptive mechanisms of metaheuristics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF21-45465L" target="_blank" >GF21-45465L: Metaheuristicky založená parametrická optimalizace modelů a řídicích systémů s dopravním zpožděním</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

  • ISBN

    979-8-3503-3703-7

  • ISSN

    1062-922X

  • e-ISSN

    2577-1655

  • Počet stran výsledku

    6

  • Strana od-do

    1084-1089

  • Název nakladatele

    IEEE

  • Místo vydání

    New Jersey, Piscataway

  • Místo konání akce

    Honolulu

  • Datum konání akce

    1. 10. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku