Non-Integer Order Proportional Integral Control for Time Delay Plant with Single Fractional Order
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63571898" target="_blank" >RIV/70883521:28140/23:63571898 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.59287/icaens.1020" target="_blank" >https://doi.org/10.59287/icaens.1020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.59287/icaens.1020" target="_blank" >10.59287/icaens.1020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-Integer Order Proportional Integral Control for Time Delay Plant with Single Fractional Order
Popis výsledku v původním jazyce
This paper studies the tuning of non-integer order proportional integral controller for time delay plants having one fractional order in its denominator polynomial. The well-known first order plus time delay plant is reorganized to have the order of the operator s to be an arbitrary real number. The main aim is to tune the parameters of the fractional order proportional integral controller to make the mentioned plant behavior to be stable and robust against unexpected changes in the gain of the system. The approach here is a graphical point of view on the Bode diagram. The two crossover points in the Bode diagram, the gain crossover frequency and the phase crossover frequency are tuned towards the desire of the researcher. This brought us to extend or to restrict the distance between these two crossover frequencies and thus, to provide the stability and robustness of the system. The design process is an analytical way from beginning to the end. Hence, the method is more reliable when compared with the methods based on optimization. This paper presents the findings of the first step in the research. The formulas to design the controller are found and the results are shown on an illustrative example.
Název v anglickém jazyce
Non-Integer Order Proportional Integral Control for Time Delay Plant with Single Fractional Order
Popis výsledku anglicky
This paper studies the tuning of non-integer order proportional integral controller for time delay plants having one fractional order in its denominator polynomial. The well-known first order plus time delay plant is reorganized to have the order of the operator s to be an arbitrary real number. The main aim is to tune the parameters of the fractional order proportional integral controller to make the mentioned plant behavior to be stable and robust against unexpected changes in the gain of the system. The approach here is a graphical point of view on the Bode diagram. The two crossover points in the Bode diagram, the gain crossover frequency and the phase crossover frequency are tuned towards the desire of the researcher. This brought us to extend or to restrict the distance between these two crossover frequencies and thus, to provide the stability and robustness of the system. The design process is an analytical way from beginning to the end. Hence, the method is more reliable when compared with the methods based on optimization. This paper presents the findings of the first step in the research. The formulas to design the controller are found and the results are shown on an illustrative example.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDING BOOK OF 5TH INTERNATIONAL CONFERENCE ON APPLIED ENGINEERING AND NATURAL SCIENCES ICAENS 2023
ISBN
978-625-99108-9-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
347-351
Název nakladatele
All Sciences Academy
Místo vydání
Konya
Místo konání akce
Konya
Datum konání akce
10. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—