On the Relation Between the Smith Predictor and Algebraic Control Approach for Time Delay Systems: A Case Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63580378" target="_blank" >RIV/70883521:28140/24:63580378 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-61575-7_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-61575-7_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-61575-7_9" target="_blank" >10.1007/978-3-031-61575-7_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Relation Between the Smith Predictor and Algebraic Control Approach for Time Delay Systems: A Case Study
Popis výsledku v původním jazyce
The Smith predictor is a well-established model-based strategy for eliminating or attenuating a dead-time effect on the control feedback loop. A controlled system model and a dead-time estimation represent crucial parts of the predictor structure that, however, are usually inaccurate. The design problem becomes more challenging when internal (state) delays also appear. An algebraic approach in a specific ring of quasi-polynomial meromorphic functions was proposed recently to design controllers for linear systems with internal delays. This contribution intends to compare these two design principles and find an equivalence between them from the viewpoint of closed-loop transfer functions. The sufficient stability condition for the Smith predictor structure is formulated, and necessary and sufficient conditions for constant-wise reference tracking and load disturbance attenuation are generally derived. A specific case of controlling a heating-cooling process for more complex (linear-wise) external signals is studied, and simple numerical robustness tests are performed. A concluding research outlook based on the obtained results is proposed as well.
Název v anglickém jazyce
On the Relation Between the Smith Predictor and Algebraic Control Approach for Time Delay Systems: A Case Study
Popis výsledku anglicky
The Smith predictor is a well-established model-based strategy for eliminating or attenuating a dead-time effect on the control feedback loop. A controlled system model and a dead-time estimation represent crucial parts of the predictor structure that, however, are usually inaccurate. The design problem becomes more challenging when internal (state) delays also appear. An algebraic approach in a specific ring of quasi-polynomial meromorphic functions was proposed recently to design controllers for linear systems with internal delays. This contribution intends to compare these two design principles and find an equivalence between them from the viewpoint of closed-loop transfer functions. The sufficient stability condition for the Smith predictor structure is formulated, and necessary and sufficient conditions for constant-wise reference tracking and load disturbance attenuation are generally derived. A specific case of controlling a heating-cooling process for more complex (linear-wise) external signals is studied, and simple numerical robustness tests are performed. A concluding research outlook based on the obtained results is proposed as well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Mechanical Engineering
ISBN
978-3-031-61574-0
ISSN
2195-4356
e-ISSN
2195-4364
Počet stran výsledku
11
Strana od-do
90-100
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Povoação
Datum konání akce
26. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—