Analysis of Conducted Emission with influences of operating frequencies and amplitudes of a self-oscillating capacitive touch sensing circuit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63587278" target="_blank" >RIV/70883521:28140/24:63587278 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10722326" target="_blank" >https://ieeexplore.ieee.org/document/10722326</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EMCEurope59828.2024.10722326" target="_blank" >10.1109/EMCEurope59828.2024.10722326</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Conducted Emission with influences of operating frequencies and amplitudes of a self-oscillating capacitive touch sensing circuit
Popis výsledku v původním jazyce
In the rapidly evolving field of human-machine interfaces (HMI), particularly in the realm of touch screen technologies, capacitive touch sensing has gained prominence due to its superior flexibility and cost-effectiveness compared to other touch interfaces, such as resistive-based methods, infrared touch sensors, and surface acoustic wave sensors. However, this advancement comes with increased emission and susceptibility to Electromagnetic Interference (EMI) and similar disturbances, notably due to factors like operating sensing frequency and voltage. The previous research underscored the challenges of Electromagnetic Emission and some drawbacks of operating capacitive sensors at higher excitation frequencies. Characteristics of traditional capacitance to digital circuits like sigma-delta capacitive sensing circuits operate at higher frequencies, thus producing challenges in terms of emission and susceptibility. This paper offers a detailed assessment of the conducted electromagnetic emissions in a self-oscillating capacitance-to-time converter. The study primarily investigates how conducted emission characteristics change in response to the sensing circuit's operating frequency and voltage variations. The oscillating capacitive sensing circuit conducts sensing with a single clock cycle, thus mitigating some of the issues associated with the traditional capacitive sensing circuits, such as sigma-delta capacitive sensing, which generally require a higher frequency of operations. The results indicate that as the sensing frequency and the operating voltage decrease, the conducted emission of the sensor improves; this phenomenon can be particularly beneficial in high EMI environments like the automotive industry, where capacitive touch sensors are placed close to sensitive electronics.
Název v anglickém jazyce
Analysis of Conducted Emission with influences of operating frequencies and amplitudes of a self-oscillating capacitive touch sensing circuit
Popis výsledku anglicky
In the rapidly evolving field of human-machine interfaces (HMI), particularly in the realm of touch screen technologies, capacitive touch sensing has gained prominence due to its superior flexibility and cost-effectiveness compared to other touch interfaces, such as resistive-based methods, infrared touch sensors, and surface acoustic wave sensors. However, this advancement comes with increased emission and susceptibility to Electromagnetic Interference (EMI) and similar disturbances, notably due to factors like operating sensing frequency and voltage. The previous research underscored the challenges of Electromagnetic Emission and some drawbacks of operating capacitive sensors at higher excitation frequencies. Characteristics of traditional capacitance to digital circuits like sigma-delta capacitive sensing circuits operate at higher frequencies, thus producing challenges in terms of emission and susceptibility. This paper offers a detailed assessment of the conducted electromagnetic emissions in a self-oscillating capacitance-to-time converter. The study primarily investigates how conducted emission characteristics change in response to the sensing circuit's operating frequency and voltage variations. The oscillating capacitive sensing circuit conducts sensing with a single clock cycle, thus mitigating some of the issues associated with the traditional capacitive sensing circuits, such as sigma-delta capacitive sensing, which generally require a higher frequency of operations. The results indicate that as the sensing frequency and the operating voltage decrease, the conducted emission of the sensor improves; this phenomenon can be particularly beneficial in high EMI environments like the automotive industry, where capacitive touch sensors are placed close to sensitive electronics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 INTERNATIONAL SYMPOSIUM AND EXHIBITION ON ELECTROMAGNETIC COMPATIBILITY, EMC EUROPE 2024
ISBN
979-8-3503-4304-5
ISSN
2325-0356
e-ISSN
2325-0364
Počet stran výsledku
5
Strana od-do
459-463
Název nakladatele
IEEE
Místo vydání
Bruge
Místo konání akce
Bruges
Datum konání akce
2. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001353599400085