Accurate X-ray absorption spectra near L- and M-edges from relativistic four-component damped response time-dependent density functional theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F22%3A63542958" target="_blank" >RIV/70883521:28610/22:63542958 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02412" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02412</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.inorgchem.1c02412" target="_blank" >10.1021/acs.inorgchem.1c02412</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accurate X-ray absorption spectra near L- and M-edges from relativistic four-component damped response time-dependent density functional theory
Popis výsledku v původním jazyce
The simulation of X-ray absorption spectra requires both scalar and spin-orbit (SO) relativistic effects to be taken into account, particularly near L- and M-edges where the SO splitting of core p and d orbitals dominates. Four-component Dirac-Coulomb Hamiltonian-based linear damped response time-dependent density functional theory (4c-DR-TDDFT) calculates spectra directly for a selected frequency region while including the relativistic effects variationally, making the method well suited for X-ray applications. In this work, we show that accurate X-ray absorption spectra near L-2,L-3- and M-4,M-5-edges of closed-shell transition metal and actinide compounds with different central atoms, ligands, and oxidation states can be obtained by means of 4c-DR-TDDFT. While the main absorption lines do not change noticeably with the basis set and geometry, the exchange-correlation functional has a strong influence with hybrid functionals performing the best. The energy shift compared to the experiment is shown to depend linearly on the amount of Hartee-Fock exchange with the optimal value being 60% for spectral regions above 1000 eV, providing relative errors below 0.2% and 2% for edge energies and SO splittings, respectively. Finally, the methodology calibrated in this work is used to reproduce the experimental L-2,L-3-edge X-ray absorption spectra of [RuCl2(DMSO)(2)(Im)(2)] and [WCl4(PMePh2)(2)], and resolve the broad bands into separated lines, allowing an interpretation based on ligand field theory and double point groups. These results support 4c-DR-TDDFT as a reliable method for calculating and analyzing X-ray absorption spectra of chemically interesting systems, advance the accuracy of state-of-the art relativistic DFT approaches, and provide a reference for benchmarking more approximate techniques.
Název v anglickém jazyce
Accurate X-ray absorption spectra near L- and M-edges from relativistic four-component damped response time-dependent density functional theory
Popis výsledku anglicky
The simulation of X-ray absorption spectra requires both scalar and spin-orbit (SO) relativistic effects to be taken into account, particularly near L- and M-edges where the SO splitting of core p and d orbitals dominates. Four-component Dirac-Coulomb Hamiltonian-based linear damped response time-dependent density functional theory (4c-DR-TDDFT) calculates spectra directly for a selected frequency region while including the relativistic effects variationally, making the method well suited for X-ray applications. In this work, we show that accurate X-ray absorption spectra near L-2,L-3- and M-4,M-5-edges of closed-shell transition metal and actinide compounds with different central atoms, ligands, and oxidation states can be obtained by means of 4c-DR-TDDFT. While the main absorption lines do not change noticeably with the basis set and geometry, the exchange-correlation functional has a strong influence with hybrid functionals performing the best. The energy shift compared to the experiment is shown to depend linearly on the amount of Hartee-Fock exchange with the optimal value being 60% for spectral regions above 1000 eV, providing relative errors below 0.2% and 2% for edge energies and SO splittings, respectively. Finally, the methodology calibrated in this work is used to reproduce the experimental L-2,L-3-edge X-ray absorption spectra of [RuCl2(DMSO)(2)(Im)(2)] and [WCl4(PMePh2)(2)], and resolve the broad bands into separated lines, allowing an interpretation based on ligand field theory and double point groups. These results support 4c-DR-TDDFT as a reliable method for calculating and analyzing X-ray absorption spectra of chemically interesting systems, advance the accuracy of state-of-the art relativistic DFT approaches, and provide a reference for benchmarking more approximate techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Inorganic Chemistry
ISSN
0020-1669
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
"830–846"
Kód UT WoS článku
000737896000001
EID výsledku v databázi Scopus
2-s2.0-85122319977