Limit point instability in pressurization of anisotropic finitely extensible hyperelastic thin-walled tube
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F71226401%3A_____%2F15%3A%231006887" target="_blank" >RIV/71226401:_____/15:#1006887 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/15:00230846
Výsledek na webu
<a href="http://www.journals.elsevier.com/international-journal-of-non-linear-mechanics" target="_blank" >http://www.journals.elsevier.com/international-journal-of-non-linear-mechanics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2015.08.003" target="_blank" >10.1016/j.ijnonlinmec.2015.08.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Limit point instability in pressurization of anisotropic finitely extensible hyperelastic thin-walled tube
Popis výsledku v původním jazyce
Mechanical responses of materials undergoing large elastic deformations can exhibit a loss of stability in several ways. Such a situation can occur when a thin-walled cylinder is inflated by an internal pressure. The loss of stability is manifested by anon-monotonic relationship between the inflating pressure and internal volume of the tube. This is often called limit point instability. The results, known from the literature, show that isotropic hyperelastic materials with limiting chain extensibilityproperty always exhibit a stable response if the extensibility parameter of the Gent model satisfies J(m) < 18.2. Our study investigates the same phenomenon but for tubes with anisotropic form of the Gent model (finite extensibility of fibers). Anisotropy, used in our study, increases the number of material parameters the consequence of which is to increase degree of freedom of the problem. It will be shown that, in stark contrast to isotropic material, the unstable response is predicted
Název v anglickém jazyce
Limit point instability in pressurization of anisotropic finitely extensible hyperelastic thin-walled tube
Popis výsledku anglicky
Mechanical responses of materials undergoing large elastic deformations can exhibit a loss of stability in several ways. Such a situation can occur when a thin-walled cylinder is inflated by an internal pressure. The loss of stability is manifested by anon-monotonic relationship between the inflating pressure and internal volume of the tube. This is often called limit point instability. The results, known from the literature, show that isotropic hyperelastic materials with limiting chain extensibilityproperty always exhibit a stable response if the extensibility parameter of the Gent model satisfies J(m) < 18.2. Our study investigates the same phenomenon but for tubes with anisotropic form of the Gent model (finite extensibility of fibers). Anisotropy, used in our study, increases the number of material parameters the consequence of which is to increase degree of freedom of the problem. It will be shown that, in stark contrast to isotropic material, the unstable response is predicted
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-27941A" target="_blank" >NV15-27941A: Využití neantigenního rybího kolagenu při konstrukci implantátů a jako nosiče léků</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
-
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
107-114
Kód UT WoS článku
000364797600011
EID výsledku v databázi Scopus
2-s2.0-84941559025