Evaluation of various spectral inputs for estimation of forest biochemical and structural properties from airborne imaging spectroscoopy data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F16%3A00461345" target="_blank" >RIV/86652079:_____/16:00461345 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5194/isprs-archives-XLI-B7-961-2016" target="_blank" >http://dx.doi.org/10.5194/isprs-archives-XLI-B7-961-2016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/isprs-archives-XLI-B7-961-2016" target="_blank" >10.5194/isprs-archives-XLI-B7-961-2016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of various spectral inputs for estimation of forest biochemical and structural properties from airborne imaging spectroscoopy data
Popis výsledku v původním jazyce
In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method – support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 – 710 nm, c) CR 705 – 780 nm, and d) CR 680 – 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 – 710 nm, whereas CR bands in range of 680 – 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.
Název v anglickém jazyce
Evaluation of various spectral inputs for estimation of forest biochemical and structural properties from airborne imaging spectroscoopy data
Popis výsledku anglicky
In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method – support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 – 710 nm, c) CR 705 – 780 nm, and d) CR 680 – 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 – 710 nm, whereas CR bands in range of 680 – 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 - Rozvoj Centra pro studium dopadů globální změny klimatu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The international archives of the Photogrammetry, Remote sensing and spatial information sciences
ISBN
—
ISSN
1682-1750
e-ISSN
—
Počet stran výsledku
6
Strana od-do
961-966
Název nakladatele
International Society of Photogrammetry and Remote Sensing
Místo vydání
s. l.
Místo konání akce
Prague
Datum konání akce
12. 7. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—