Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Static Model of Abiotic Predictors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F16%3A00467364" target="_blank" >RIV/86652079:_____/16:00467364 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43410/16:43910894 RIV/47813059:19240/16:N0000201 RIV/61989592:15310/16:33161845

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Static Model of Abiotic Predictors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis

  • Popis výsledku v původním jazyce

    The closeness of dependence level between growth environment (abiotic predictors) and forest ecosystem (receptor) indicatesnaccordance or discrepancy between site and forest state. Our forest ecosystem analysis was focused on static model approximationnbetween abiotic predictors with the closest dependence and properties of the receptor at 11 km grid in the Czech Republic (CentralnEurope). The predictors have been selected from natural abiotic quantities sets of temperatures, precipitation, acid deposition, soilnproperties and relative site insolation. The receptor properties have been selected from remote sensing data, density and volume ofnabove-ground biomass of forest stands according to the forest management plans, and from surface humus chemical properties. Anselection of the most dependent quantities was made by combining factor analysis and cluster analysis. The static modelling of thendependences between selected predictors and receptor properties was conducted by canonical correlation analysis. Average temperature,nannual precipitation, total potential acid deposition, soil base saturation, CEC, total acid elements and site insolation indexnclosely corresponded to NDVI and surface humus base saturation, Corg and acid elements content at 30% of the analysed grid ofnforest soils and it indicated forest state within the confidence interval at 69% of the forest soil grid (rCCA = 0.79; P < 0.00001). Thenforest ecosystem state that corresponds to the selected abiotic predictors was demonstrated in hilly altitudes. The tested procedure isninconvenient for forest state analysis in floodplains and moorlands. Based on approximation deviations, highland and mountain forestsnwere divided into areas with non-optimum or more optimum ecosystem state than as corresponds to the values of the predictors.n

  • Název v anglickém jazyce

    A Static Model of Abiotic Predictors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis

  • Popis výsledku anglicky

    The closeness of dependence level between growth environment (abiotic predictors) and forest ecosystem (receptor) indicatesnaccordance or discrepancy between site and forest state. Our forest ecosystem analysis was focused on static model approximationnbetween abiotic predictors with the closest dependence and properties of the receptor at 11 km grid in the Czech Republic (CentralnEurope). The predictors have been selected from natural abiotic quantities sets of temperatures, precipitation, acid deposition, soilnproperties and relative site insolation. The receptor properties have been selected from remote sensing data, density and volume ofnabove-ground biomass of forest stands according to the forest management plans, and from surface humus chemical properties. Anselection of the most dependent quantities was made by combining factor analysis and cluster analysis. The static modelling of thendependences between selected predictors and receptor properties was conducted by canonical correlation analysis. Average temperature,nannual precipitation, total potential acid deposition, soil base saturation, CEC, total acid elements and site insolation indexnclosely corresponded to NDVI and surface humus base saturation, Corg and acid elements content at 30% of the analysed grid ofnforest soils and it indicated forest state within the confidence interval at 69% of the forest soil grid (rCCA = 0.79; P < 0.00001). Thenforest ecosystem state that corresponds to the selected abiotic predictors was demonstrated in hilly altitudes. The tested procedure isninconvenient for forest state analysis in floodplains and moorlands. Based on approximation deviations, highland and mountain forestsnwere divided into areas with non-optimum or more optimum ecosystem state than as corresponds to the values of the predictors.n

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    EH - Ekologie – společenstva

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Baltic Forestry

  • ISSN

    1392-1355

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    LT - Litevská republika

  • Počet stran výsledku

    14

  • Strana od-do

    259-274

  • Kód UT WoS článku

    000392367900009

  • EID výsledku v databázi Scopus

    2-s2.0-85008485191