Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F17%3A00473915" target="_blank" >RIV/86652079:_____/17:00473915 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/17:43911224
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.eja.2016.12.009" target="_blank" >http://dx.doi.org/10.1016/j.eja.2016.12.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eja.2016.12.009" target="_blank" >10.1016/j.eja.2016.12.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe
Popis výsledku v původním jazyce
Realistic estimation of grain nitrogen (N, N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simulation (multi-year) performs better than single year simulation, (2) assess if calibration improves model performance at different calibration levels, and (3) investigate if a multi-model ensemble can substantially reduce uncertainty in reproducing grain N. For this purpose, 12 models were applied simulating different treatments (catch crops, CO2 concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat, winter barley, spring barley, spring oat, winter rye, pea and winter oilseed rape. Our results indicate that the higher level of calibration significantly increased the quality of the simulation for grain N. In addition, models performed better in predicting grain N of winter wheat, winter barley and spring barley compared to spring oat, winter rye, pea and winter oilseed rape. For each crop, the use of the ensemble mean significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15%, thus a multi-model ensemble can more precisely predict grain N than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year simulation based on the multi-year performance, which suggests needs for further model improvements of crop rotation effects. (C) 2016 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe
Popis výsledku anglicky
Realistic estimation of grain nitrogen (N, N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simulation (multi-year) performs better than single year simulation, (2) assess if calibration improves model performance at different calibration levels, and (3) investigate if a multi-model ensemble can substantially reduce uncertainty in reproducing grain N. For this purpose, 12 models were applied simulating different treatments (catch crops, CO2 concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat, winter barley, spring barley, spring oat, winter rye, pea and winter oilseed rape. Our results indicate that the higher level of calibration significantly increased the quality of the simulation for grain N. In addition, models performed better in predicting grain N of winter wheat, winter barley and spring barley compared to spring oat, winter rye, pea and winter oilseed rape. For each crop, the use of the ensemble mean significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15%, thus a multi-model ensemble can more precisely predict grain N than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year simulation based on the multi-year performance, which suggests needs for further model improvements of crop rotation effects. (C) 2016 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 - Rozvoj Centra pro studium dopadů globální změny klimatu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Agronomy
ISSN
1161-0301
e-ISSN
—
Svazek periodika
84
Číslo periodika v rámci svazku
mar
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
152-165
Kód UT WoS článku
000395844100015
EID výsledku v databázi Scopus
—