Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F17%3A00473915" target="_blank" >RIV/86652079:_____/17:00473915 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/17:43911224

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.eja.2016.12.009" target="_blank" >http://dx.doi.org/10.1016/j.eja.2016.12.009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eja.2016.12.009" target="_blank" >10.1016/j.eja.2016.12.009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

  • Popis výsledku v původním jazyce

    Realistic estimation of grain nitrogen (N, N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simulation (multi-year) performs better than single year simulation, (2) assess if calibration improves model performance at different calibration levels, and (3) investigate if a multi-model ensemble can substantially reduce uncertainty in reproducing grain N. For this purpose, 12 models were applied simulating different treatments (catch crops, CO2 concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat, winter barley, spring barley, spring oat, winter rye, pea and winter oilseed rape. Our results indicate that the higher level of calibration significantly increased the quality of the simulation for grain N. In addition, models performed better in predicting grain N of winter wheat, winter barley and spring barley compared to spring oat, winter rye, pea and winter oilseed rape. For each crop, the use of the ensemble mean significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15%, thus a multi-model ensemble can more precisely predict grain N than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year simulation based on the multi-year performance, which suggests needs for further model improvements of crop rotation effects. (C) 2016 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

  • Popis výsledku anglicky

    Realistic estimation of grain nitrogen (N, N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simulation (multi-year) performs better than single year simulation, (2) assess if calibration improves model performance at different calibration levels, and (3) investigate if a multi-model ensemble can substantially reduce uncertainty in reproducing grain N. For this purpose, 12 models were applied simulating different treatments (catch crops, CO2 concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat, winter barley, spring barley, spring oat, winter rye, pea and winter oilseed rape. Our results indicate that the higher level of calibration significantly increased the quality of the simulation for grain N. In addition, models performed better in predicting grain N of winter wheat, winter barley and spring barley compared to spring oat, winter rye, pea and winter oilseed rape. For each crop, the use of the ensemble mean significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15%, thus a multi-model ensemble can more precisely predict grain N than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year simulation based on the multi-year performance, which suggests needs for further model improvements of crop rotation effects. (C) 2016 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 - Rozvoj Centra pro studium dopadů globální změny klimatu</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Agronomy

  • ISSN

    1161-0301

  • e-ISSN

  • Svazek periodika

    84

  • Číslo periodika v rámci svazku

    mar

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    152-165

  • Kód UT WoS článku

    000395844100015

  • EID výsledku v databázi Scopus