Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00549294" target="_blank" >RIV/86652079:_____/21:00549294 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/21:43919933
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/performance-of-13-crop-simulation-models-and-their-ensemble-for-simulating-four-field-crops-in-central-europe/AC757AB2629DC7C537C2DA9696B59CD6" target="_blank" >https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/performance-of-13-crop-simulation-models-and-their-ensemble-for-simulating-four-field-crops-in-central-europe/AC757AB2629DC7C537C2DA9696B59CD6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0021859621000216" target="_blank" >10.1017/S0021859621000216</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe
Popis výsledku v původním jazyce
The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.
Název v anglickém jazyce
Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe
Popis výsledku anglicky
The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Agricultural Science
ISSN
0021-8596
e-ISSN
1469-5146
Svazek periodika
159
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
S0021859621000216
Kód UT WoS článku
000721282400010
EID výsledku v databázi Scopus
2-s2.0-85107362839