Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00549294" target="_blank" >RIV/86652079:_____/21:00549294 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/21:43919933

  • Výsledek na webu

    <a href="https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/performance-of-13-crop-simulation-models-and-their-ensemble-for-simulating-four-field-crops-in-central-europe/AC757AB2629DC7C537C2DA9696B59CD6" target="_blank" >https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/performance-of-13-crop-simulation-models-and-their-ensemble-for-simulating-four-field-crops-in-central-europe/AC757AB2629DC7C537C2DA9696B59CD6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0021859621000216" target="_blank" >10.1017/S0021859621000216</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe

  • Popis výsledku v původním jazyce

    The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.

  • Název v anglickém jazyce

    Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe

  • Popis výsledku anglicky

    The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40101 - Agriculture

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Agricultural Science

  • ISSN

    0021-8596

  • e-ISSN

    1469-5146

  • Svazek periodika

    159

  • Číslo periodika v rámci svazku

    1-2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    21

  • Strana od-do

    S0021859621000216

  • Kód UT WoS článku

    000721282400010

  • EID výsledku v databázi Scopus

    2-s2.0-85107362839