Statistical analyses of Land Surface Temperature in Local Climate Zones: Case study of Brno and Prague (Czech Republic)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F17%3A00485079" target="_blank" >RIV/86652079:_____/17:00485079 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/17:00096376
Výsledek na webu
<a href="http://dx.doi.org/10.1109/JURSE.2017.7924530" target="_blank" >http://dx.doi.org/10.1109/JURSE.2017.7924530</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JURSE.2017.7924530" target="_blank" >10.1109/JURSE.2017.7924530</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical analyses of Land Surface Temperature in Local Climate Zones: Case study of Brno and Prague (Czech Republic)
Popis výsledku v původním jazyce
The classification of local climate zones (LCZs) emerged in urban climatology to standardize description of urban climate research sites. One of the goals of classification was to get beyond urban-rural dichotomy which enabled to study urban air temperature field in more detail. Based on empirical and modelling work LCZ have proven effective in examining intra-urban air temperature differences, however a robust examination of intra-urban land surface temperatures using the LCZ framework remains elusive. In this study a GIS-based method is used for LCZ delimitation in Prague and Brno (Czech Republic), while land surface temperatures (LSTs) derived from LANDSAT and ASTER satellite data are employed for exploring the extent to which LCZ classes discriminate with respect to LSTs. Results indicate that LCZs demonstrate the features typical of LST variability, and thus typical surface temperatures differ significantly among most LCZs. ANOVA and subsequent multiple comparison tests demonstrated that significant temperature differences between the various LCZs prevail in both cities (89.3% and 91.6% significant LST differences for Brno and Prague respectively). In general, LCZ 8 (large low-rise buildings), LCZ 10 (heavy industry) and LCZ D (low plants) are well-distinguishable, while LCZ 2 (compact midrise), LCZ 4 (open high-rise), and LCZ 9 (sparsely built-up) are less distinguishable in terms of their LST. In most of the scenes LCZ 10 (heavy industry), LCZ 2 (mid-rise buildings) and LCZ 3 (low-rise building) are the warmest and LCZ G (water bodies) and LCZ A (dense forest) are the coolest zones in term of their LST. Further studies are needed to account for observational errors (such as seasons differences or thermal anisotropy) on LCZ LST patterns.
Název v anglickém jazyce
Statistical analyses of Land Surface Temperature in Local Climate Zones: Case study of Brno and Prague (Czech Republic)
Popis výsledku anglicky
The classification of local climate zones (LCZs) emerged in urban climatology to standardize description of urban climate research sites. One of the goals of classification was to get beyond urban-rural dichotomy which enabled to study urban air temperature field in more detail. Based on empirical and modelling work LCZ have proven effective in examining intra-urban air temperature differences, however a robust examination of intra-urban land surface temperatures using the LCZ framework remains elusive. In this study a GIS-based method is used for LCZ delimitation in Prague and Brno (Czech Republic), while land surface temperatures (LSTs) derived from LANDSAT and ASTER satellite data are employed for exploring the extent to which LCZ classes discriminate with respect to LSTs. Results indicate that LCZs demonstrate the features typical of LST variability, and thus typical surface temperatures differ significantly among most LCZs. ANOVA and subsequent multiple comparison tests demonstrated that significant temperature differences between the various LCZs prevail in both cities (89.3% and 91.6% significant LST differences for Brno and Prague respectively). In general, LCZ 8 (large low-rise buildings), LCZ 10 (heavy industry) and LCZ D (low plants) are well-distinguishable, while LCZ 2 (compact midrise), LCZ 4 (open high-rise), and LCZ 9 (sparsely built-up) are less distinguishable in terms of their LST. In most of the scenes LCZ 10 (heavy industry), LCZ 2 (mid-rise buildings) and LCZ 3 (low-rise building) are the warmest and LCZ G (water bodies) and LCZ A (dense forest) are the coolest zones in term of their LST. Further studies are needed to account for observational errors (such as seasons differences or thermal anisotropy) on LCZ LST patterns.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
JOINT URBAN REMOTE SENSING EVENT (JURSE)
ISBN
978-1-5090-5808-2
ISSN
2334-0932
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Dubai
Datum konání akce
6. 3. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000406006100002